21

A Programming Language and its Implementation
for a Mini-computer

Takeshi Kiyono¥* Katsuo Ikeda* and Takao Ono*

.

Abstract

In this reportey a new programming language, PL/R, and its implementation in a mini-
computer, FACOM-R, are described.

PL/R is a compiler level language designed for mini-computer programming, whose
facilities ranged up to the assembly language level; it can handle all of the hard-
ware features of the computer. Accordingly, PL/R is suitable for writing every kind
of program including system programs such as 1/0 control and interrupt processing.

The implementation of PL/R is performed by a bootstrapping.method, in both PL/I and
PL/R, utilizing a large scale'computer system.
We believe that this method could be used in other computer systems to implement

new computer languages efficiently.

1. TIntroduction

Mini-computers are more suitable for real time controls than arithmetic computa-
tions and it is often necessary for thevuser to write the these programs or the
interrupt processing programs. It is rather improper to write these programs using a
compiler level language such as FORTRAN or COBOL. On the other hand, an assembly
language 18 very powerful to use the hardware features efficiently, but it is
troublesome in programming and debugging.

After all, compiler level languages which can handle the hardware features as
well are more desirable for mini-computers than assembly languages.

We designed a new language, PL/R, for system programming of mini-computer whose
language specification , implementation and compiler configuration are described in

some detail.

2. Language Specification

Program structure: A program is composed of an externdl procedure which is,

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 15, No. 8 (1974), pp. 595~602.

* Department of Information Science, Kyoto University

22

generally, composed of a procedure statement, conditional.statements, unconditional
statements and internal procedures.

Declaration statement: Declaration statement is used to declare variables and
arrays which is available in the procedure. It must appeare immediately below the
procedure statement. There are two kinds of options, INIT and DEF. INIT option
assigns the initial value of variables or arrays and DEF option defines the location
in absolute address in the main memory.

Unconditional statement: Assignment, GO

Operator| Leve
TO, CALL,RETURN, I/0, ON, AKI, CM statements OR b T JLogical Or
AND b| 2 [Logical And
and DO unit are treated as unconditional NOT u 3 |Logical Not
>,4,= |b] 4 |Comparative
statements. Operaters between level 5 and 10 BIT bl 4 |[Compare Bit "n" with "1'
@ b 5 |Exclusive Or
in the Table 1 may be used in the expression. / b 5 |0r
& bl 6 |And
The accumulater register, ACC, used for the # u 7 ot
cobT
operation may appear explicitly in the expre- - u 9
SLL b| 10 |shift Left Logical
ssion. Input/Output and peripheral device SRL b| 10 |Shift Right Logical
SLC b| 10 |Shift Left Circular
control or device status check can be expressed |SRA b| 10 |[Shift Right Arithmetic
explicitly. I/0 statement has parameters such b : binary op. u @ unary op.
as the device address ,the command word,etc. Table. 1 Operators of PL/R

ON, AKI, CM statements are used for the interrupt processing. ON TRAP statement
denotes the entry point into the interrupt processing routine and ON RESET statement
denotes the return point, 1if needed, after interrupt processing. AKI statement is
used to get the device address which causes the interruption. CM statement changes
the mode of operation from normal mode to interrupted mode and vice versa.

Data: The simple variable, the one-dimentional array and the constant can be
used in PL/R,which have no attribute. There are four types of constants in expression

decimal constant ,hexadecimal constant,bit constant and character constant.

3. Implementation of PL/R

The implementation of PL/R to FACOM-R is performed by the bootstrapping method
using a large scale computer, FACOM 230-75. First, we make a kernel compiler in the
large scale computer system using PL/I. Then, the PL/R compiler written in PL/R is
compiled by the kernel compiler in the large scale computer system and a object
module of the PL/R compiler which runs in the mini-computer is obtained. The sequence

of the bootstrapping is shown in Fig. 1 . 1In the figure, PL/R COMP in PL/I denotes

23

the PL/R com

L/R piler written in PL/T. ML-75 and ML-R
denote the machine languages of FACOM 230-7 nd
guag 5a E/R COM;I E/R coMpP f’ROGRr\.\l
in PL/I in PL/R in PL/R
FACOM-R.

4. PL/R Compiler Configuration in ML

______ guration FACOM 230-75
I

The PL/R compiler has the following four passes.
in_ML-75
4.1 PASS I : Lexical analysis

FACOM 230-75

PROGRAM
4.2 PASS II: Syntax analysis in ML-R
Using a Production Laguage (PL) shown in Fig. 2, PL/R, COMP FACOM-R

we represent the syntax analysis algorithm and

construct the syntax analysis routine. It would be
more general to make a syntax analysis pass auto-
Fig.l Bootstrapping Method
matically using a interpreter of PL.
PL has production rules (rewriting rules) of the grammer and defines the order to
apply them. PL statements are interpreted incorporating a stack memory. If the symbol
sequence on the stack matches with the one of the left part of the production rule,

it is replaced with the right side of the production rule and the corresponding

semantic routine 1s executed. If it doesn't match, the statement is skipped.

R iaad PRODUCTION SYNTAX OF EXPRESSION PART *e¢¢e
LABEL PRODUCTION RULE ACTION SCAN NEXT
T™?2 (TERM 3) (OP-3) * EXPO
(22) (TERM2) (OP-2) CTERM3) ¢ANY> —) (TERM2) (ANY) EXEC74 TM1
—(TERM3) YANY) —) (TERM2) (ANY) EXECT? TM1
(TERM 3) (ANY> —) (TERM2) (ANY) EXECTS
TM1 C(TERM 2) ¢OP-2) * EXPo
% (TERM2) CANY) ~) (TERM1) CANY) EXECTT T™O
(TERM 2) CANY> —) (TERM1) (ANY) EXECT7S$
™O0 CTERM 0) & (TERM 1) ¢(ANY) -) (TERMO) CANY) EXEC74 EXP1
(TERM 1) (ANY> => (TERMO) (ANY)> EXECT75
EXP1 (TERMO) & * EXPO
$1) CEXP) <OP-1y CTERM0) (ANY)> —) (EXP) (ANY) EXEC 74 EXP2
CTERMO) CANY)) (EXP) (ANY) EXECT75
EXP2 (EXP) (OP-1) * EXPO
CEXP) (OP-4) * EXPO
#3) (PRIM)=(EXP); —) (ASSIGN) EXEC 86 uce
{VAR) (CEXP)) =) (FACT) EXEC o4 * T™M3
(KEXP)) -) (FACT) EXEC9 % TM3
<ID) (CEXPY) —> <(PRIM) EXEC93 % PRMO

Fig.2 Production Syntax of PL/R (Expression part)

For example, A=X+(Y/5); has a syntax tree shown in Fig.3. The status of the stack
at the stage #1 in Fig.3 is shown in Fig.4 (1) and it is transformed to Fig.4 (2)
being applied the production rule,
{expression) (operater-1) {(term-0> - <expressiond .
At the same time, the semantic routine generate a quadruple,
(OR , (VAR, y) , (CONST, 5) , (TEMP, 1)) (1)
(TEMP, 1) is a temporary memory. On the same way, quadruples are generated at the

stage #2, #3.

24
(PLUS , (VAR, x) , (TEMP, 1) , (TEMP, 2)) (2)
(3)

4.3 'PASS III: Optimization and Storage Allocation

(ASSIGN , (TEMP, 2) , (0 ,0) , (VAR, a))

Quadruples mechanically generated in PASS II is
much redundant. For ememple, (VAR, x) and (TEMP, 1)
in the quadruple (2) are exchangeable and
in the quadruple (1), (2) are redundant. This kind
of optimization can be easily excuted by comparing
succeeding two quadruples. Quadruples (1), (2), (3)

are optimized as follows.

(OR , (VAR, y) , (CONST, 5) , (0, 0)) (1)
(PLUS , (O, 0) , (VAR, x) , (0, 0)) (2)'
(ASSIGN , (0 , 0) , (O, 0) , (VAR, a)) (3)'

Storage for variables, arrays, registers,
temporary memories, constants and programs are
allocated in this pass. The label table which is
constructed in PASS IT is also completed.

4.4 PASS IV: Code Generation

This pass generates relocatable binary object
codes each of which has a control byte for the
relocatable loader. An example of a PL/R program

and a part of its object code are shown in Fig.5.

5. Conclusion
The efficiency of a program written in PL/R

becomes almost the same as the one written in the

(TEMP, 1)s

(assignment statement)

en::-o)
(term-1)
{term-2)

[] \
// o~
/ .

(#2)

(ler!n-z)

{term-3)
(factor)

(expression)
- (#0)
ion

(term-1}

\
[(terln 0)
(term-2)

(lcr‘m-l)
(m'm-z)
(ter'm-"!)
(factor)
{operator-1)
{constant))

(term-3) (term-3)
(hcltor) {factor)
{primary) | (variable) (variable)
| {operator-2)
|
A = X 4
8009 4003 800A

Fig.3 Example of

m

Y / 5

Syntax-tree

0 0003 6002 100 90000005 0004 005

(2)

(SYN) (SEM)

10) -_—

] {term-0) CON(SST' i
8 (operator-1) /

7 {expression) VAR(y’) N
6 (—_—

5 (operator-2) -+

4 (term-2) VARG ¥
3 - j—
2 {primary) VAl(YA') *
1| {(procedure head) —_
1] + _—

(SYN) (SEM)
8) —
7 {expression) TEMP . 1
(temporary variable)

6 (—_—

5 {operator-2) +

4 (term-2) VAF}X') x
3 - —

2 (primary) VARG *
1 | {procedure head) —_—
0 [—

Fig.4 Syntax-analysis Stack

assembly language, with the exception of IF statement and DO WHILE statement. In case

of address calculation of array, the efficiency may be reduced, because address

calculation must be repeated every time even if the same array element is accessed.

However, we will be able to compensate the deficiency by optimization. As general

logical expression is allowed for conditional term, IF statement and DO WHILE

statement generate rather in-efficient object code and th run time efficiency of a

PL/R program is affected considerably as bad as one half of an assembly language

program at the worst case. Yet, taking into account that mini-computers are often used

25

in dedicated interactive processing with a single user, we receive more profit of the

improvemént of the programming efficiency through the use of a compiler language than

we pay for the run-time deficiency.

We made a macro-processor using PL/R which was about 600 statements in PL/R and

whose object module became 3600 steps. We were able to complete it within much shorter

period of a month than it would taken when we had programmed in an assembly language.

We are now revising the PL/R compiler by introducing automatic variables and

pointer variables and by improving the facility of interrupt processing.

P T STy vy e

FACOM=R PL/R CCMPILER (C]YCNO LAB)

TAPUNC

: PROC 3

7% READ FROM KEY BUARD s PUNCH OUT TG PAPER TAPE o/

BEGIN

START
NEXT

PUNCH

FEED

[N AUFFER (120) + BUFPT 4 CR INITC'A'X) o
B8SP INIT('8'X) + CCDE

;CALL FEED(300) §

BUFPT=0 &

1CALL GETKYS 1§

$1F COVEsCR THEN GO TO PUNCH §

IF CODESBSP THEN
oo ¢

/e BACK SPACE PROCESSING o/
BUFPTsBUFPY=1 |

IF BUFPT(O THEN BUFPTa0 §
6O TO START 4

END 3
BUFFCR(SUFPT)SCO0E
BubPT=EUFPTe) |
GC YO START 3
tAUFFERC(BUFPTISCR §

CALL PUTHSP (BUFFERVBUFPT) |
CALL FEED(S)

BUFPTEQ 3

CALL GETKYB 1

IF CODEe*8* THEN GO TO BEGIN 4
GO TO NEXT §

1PROC (NC) &

ocL 1

10 §

0O WHILE 1¢NO ¥
WRA(3.0) §
lajel

END 1

END /OFEED o/ 3

GETRY3;PROC

/® GET CNE CHARACTER FRCM KEY BCARD s/
ocL ONECHR INIT('8000°X))
CTL(24«CNECHR)

RDA(2+CODE) 3

CCDESCODE & *TF'x |}

ENO /@ GETKYB «/ 3

PUTHSP;PROC (BUFFER(s) +BUFPT)

'
/; PUN?N QUT DATA FROM BUFFER TC PAPER TAPE #/
['

=0 }

DO WHILE [CBUFPTeL §
WRAC BUFFERCDY) B
lelel 4

END)
END /# PUTHSP o/ §
END /@ MAIN PROGRAM #/)

S™M 1O, 1

STM KO. 3

STM 40, 4
STM NO. 5
ST 0. 6

STA N0, 7

ST NO. 8

STM NO. 9

(418

0080
000s
V00s
0vos
000«
Goos
0004
000y
VU0e
Quoz
V0w

Fig.5 Example of PL/R Source List and Partial

ML ASSEMBLY LIST

0000 ORG
1406 3
7002 ST
1805 L
7003 ST
9601

0080 OC
0Q08 oc
0153 oC
océs OA
9601 8
01533 ©OC
1006 L
7406 ST
Ca0) ™t
9403

9601 8
0000

8601 8L
QOEE ocC
1a08 L
1A0C

7801 ST
4601 8L
0112 OC
1504 L
3602

€900 TAL
3403

1a00 L
9402

F100 SLL
E900 TAL
9403 8
9601

00AT oc
9601

00C0 0C
1o06 L
3603

£900 TAZ
9403

1400 L
9402 B
F100 SLL
£900 TAZ
9403 L]
9601 8
00C3 oC
1901 L
3400 S
801 ST
3a0C S
E¥00 Tap
9403 s
F108 SLL
9802 8
1A00 L
€900 TAZ
9403 8
9601]
opcr DC
List of

0000

x0ZzZOZ
.
.
-3
o
-

ZMmZ OO TOMK P XZZZO
o
S
o
]

ZrZ OO0 B DX
o
<
o
-

RZ HZT Z HOKHO DX
o
o
o
0

Object

