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umerical Integration by Bicubic Spline Function

Yukuo Isomoto®

Abstract

Numerical double integrations are very laborious even for a high speed computer
in terms of CPU-time, Furthermore, if the integrand is composed of a product of
several functions, more CPU-time is necessary to make the integrand a single func-
tion owing to the multiplication of functions. In this paper, we formulate the
double integration by which both the multiplication of three functions (¢4(x), 5(x,y)
and ¥(y)) and the integration are executed at a time, The formulation is accomp-
lished with the use of bicubic spline functions,

1. Introdunction

With the development of large and fast digital computers, it has become possible
to devise new algorithms for numerical calculations in order to use effectively the
computers., One of such devices is a piecewise polinomial spline function, which is
applicable to interpolation problems, differential equations, numerical integrations
and so on,1,2) '

The purpose of this paper is to formulate the following numerical integration,

) "‘“j "% (x)5x, y)¥(y)dxdy,

Xmin min
in which the integrand is a product of three functions $(x), %(x,y) and ¥(y). The

integral is often used in some fields of physics, The formulation is accomplished
through the aid of bicubic spline functions. The formula has some advantages,
This is expressed in a simple form and adapted to computer programming, and is
effective for integrations for a group of many functions $(x) and ¥(y). Moreover,
the formula will be useful for such a new computer system as an array processor.
The integrals f$(x)dx and Jfo(x,y)dxdy are also formulated by spline functions.

2. Spline Interpolation of Integrand

We assume a partition of an interval [xmin'

point Xpr Xpin O(XI("'<XM Xnax® For simplicity, the interval is assumed to be

uniformly partitioned. Let h=(x -X
max min
[xm’xmﬂ] , the cubic spline function fm(x) for ¢(x) is given as?),

xmax] into M subintervals by mesh

)/M be the mesh spacing. In a subinterval

$(x) = fm(x), X, & XL X m0,1,2,...,M-1,

mel’

£ (0) = (9~ ?ﬁ’)x, ¢ Bpoy - T4BDx_+ D nhya 3 DD 2.1
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X, = G0/, x_= ex /by g= 4, 442 = Pe0x ) jax,

+ mel
Here, x’ and x_ are called normalized distances to the adjacent mesh points. The
6 (x) and its second derivative fit exactly to ¢, and ,r(nz) at the point x .  Now, in

order to obtain a simple expresslon, we define the following vectors;

T W h2, h2, (2
3m (bn™ 5 ¥ + Pna1™ § ¢m01' g P g fmad o
-
X:; =[x, x_, "2' x37. 2.2)

With the use of eq.(2.2), the cubic spline function eq.(2.1) can be rewritten as

£ =RF  or -FLE . (2.9
m m m m n
Similarly, the spline function gn(y) for Yy(y) is written as
» T —»
RCIIEE 45 N SES 2 A (2.6)
where .
T . @ 2)
‘Fn ”’n 6 *n * Vne1” 6 "nol’ 6 .P( q’nﬁl
T
Yn - [y’r Y_» Yir YE] ’ h'(yn,l—yn). (2.5)

Vo= Gp /e vy (yy b,y <y <y .
Here, the uniform partition of an interval [ymln'yﬁSxJ is assumed as,
-y0<yl<y2<...<yu-yax.

Ymin m

e
The first derivative of f (x) is easily calculated as ; f‘:(x) - (d)sg/dx)'gm.
Matching first derivatives f”(x) and f“’ (x) at xg yields
- = (h® @ @) u)
h(¢m01 2¢m. ) = (h?/6)» (¢ +6'P 40 ). (2.6)

The second derivatives tp(!;” (m=1,2,...,M-1) can be determined by eq.(2.6) with
¢, (m0,1,...,4), 9(2) and {2 2)  Hereafter, we assume that the second derivatives

m-1

have already been given in any ways,

There is no unique way of writing the bicubic spline function for ';(x,y)l.') Our
procedure of a spline interpolation is an improvement on the piecewise cubic inter-
polation procedure in eq.(2.1), The uniform partition of the interval [xmin’xmax]x

[ymm.y ] is assumed in a same way as in eq.(2.2) and (2.5). Then, the bicubic

apline function zm,n(x.y) for g(x,y) is written as,
B06Y) =z, (OGY), X <X X Y <Y Y

»T -
(x,y) - Xm Fm o Yn . (2.7)

Here, the matrix F is given as,
m,n

ale2 02 ]

-
%n * %m,nel ’ %m,n ’ %m,nel
€0, 2) (0-2)

“mo-l,n' “m*l,ml’ "mvl n’ amﬂ,n#l

F .= (2.8)
MR gt2,0) | (2,0 al2:2)  (2,2)
mn * “myn+l * “m,n ° Tm,n+l
a(2.00 (2,0 42,2 a2 2

| mel,n’ “mel,nel’ “mel,n’ T mel,nel



The matrix elements of Fm o are shown in appendix (see Appendix).
’

3, Formulation of Numerical Integration
Owing to the assumption of the uniform partition, we can obtain the constant vec-

2 X Yy
tor 3; 3! - jxm*liﬁdx - fy“’l?idy. Here, X = [h/2, h/2, h/4, h/4}, By the
m n

integration of eq.(2.3), the following formula is obtained,

jxmax M-I»T
Lo = TR (3.1
min m=0
And also, by the integration of eq,(2, 7). we can obtain the following formula,
M-l N-1
fxmj max;(x.y)dxdy - % ZAF, 3. 3.2
m=0 n=0

By rewritlng eq.(3 1) under the assumption 1’ ¢ u(?mu-Zmetviﬁ 1), h{)”- h"'#(” =0,

we have the following formula similar to Duran's
max
Jx ¢(x>ax ORI CRT RIS Z¢ 1.

Now, we proceed to the integration !3#(x)§(x,y)$(y)dxdy. Using eqs.(2.3), (2.4)
and (2,7), we have

2T, - > 3T 2 o

POAG(x,YIW(Y) = Q XX m Fm,n Yn¥n ¥ (3.3

<

Owing to the assumption of the uniform partition, we can obtain the constant matrix As

-» > >
jxm’lx T - IyanY YTdy. The matrix A is explicitly written as,
n

h/3 h/6 h/S  h/20
h/6 h/3 h/20 h/S
h/5 h/20 h/7  nh/140
h/20 h/5 h/140 h/7

By the double integration of eq.(3.3), the following result is obtained,
M-1 N-1_
fomx T gy sy My = T T EWE, k. 3.0
*min’ Ymin m=0 n=0
In eqs.(3.1) and (3.4), for effeciency, it is better to treat the factors (az ),

(AII) and (Aﬁm) as a single factor. Moreover, you had better take common factors
about the mesh spacing h out of the vector 3 or the matrix A in a process of

numerical integration, and multiply the final results by h at the last step.

4, Conclusion and Discussion

The formulae obtained in section 3 are effective for a computer system, for example,
an array processor which can calculate fast a matrix multiplication or addition.
When we integrate many sets of functions $(x) and ¥(y), eq.(3.4) is advantageous over
eq.(3.2). In eq.(3.4), the integrand is left to be a product of three functions, so
that the integration can immediately be executed with the multiplication of three
spline functions at a time, Then, the integration is executed through the following

two steps: M-1
3. - Z@r ., Integral - ZJ ad).
m=0 ’

n=0 "

With the second equation, the integral for ¥(y) can be obtained by one-dimensional
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integration.

Error bounds are given as

(h5/360)2ﬂ¢;"||. for eq.(3.1)
CFELDD 3/ Tl IR LA B for eq.(3.2)
6 ) )
(o8 1360028, U5, UL + BH- o, ol M0l
thenll(lsma ll ¢ 13524 )Il*nl} for eq.(3.4)

where ”¢m" is a maximum value of |’(xx in a subinterval [x n*Xme1)s and “;m,n" a
maximum value of |g(x,y)] in a subinterval [xm.xm1 x[yn,yn+l] Here,

;I(T‘lhlfln =8‘§\ y Iai‘n ‘;n(;o,;'lt) "345(7('3")/?}". ,‘IIT‘ -aéélx)/?x_‘f,

¥ - HV eyt x=x, v Voo

These error bounds are derived from the assumption of differentiability of $(x),
¥(y) and z(x,y).

Some examples for eqs.(3.2) and (3.4) were calculated by the computer NEAC 2200
series Model 700, In the table 1, a CPU-time and a relative error are shown for
each example. For the matrix Fp g, the !é,z":) ’ ,(no,',-,” and 5,%,2;;,2’ are calculated
by differences of a function &(x,y). The ¢(x), P(y) and these derivatives are
given within relative errors 0(107'®), Although the integrand in eq.(3,2) are
generated by the multiplication of the ¢(x), ;(x,y) and (y), these CPU-time are
not included in those of the table. In the computer, a CPU-time is 1,7usecond for
a summation or a substraction, 2.4usecond for a multiplication, and 3.4msecond for

a division, Floating (real) numbers have relative errors 0(10~'0),

Table 1 Results of numerical integrations by eqs.(3.2) and (3.4)., The
relative errors and CPU-times are shown for each example and each formula.
The following functions are used; ¢(x)=sin(x), Y(y)=cos(y), xmin-ymin-o’
xmax-ymai-n'and h=1%/100. The function 3(x,y) are shown in the table,
For eq.(3.2), the integrand is generated by a multiplication of three
functions $(x), ¥(y) and %(x,y).

t(x,y) for example
(14y?)-exp(-x-y) | (1-y2)-sin(x-y)
relative | by eq.(3.h) 3.70%10”7 1.46x1075
error by eq.(3.2) L.28x10" 3 1.53x107"
. by eq.(3.4) 3.9 sec. 3.9 sec
CPU-~time| 10 oq.(3.2) 3.1 sec. 3.1 sec.
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Derivation of spline function zZy, n(x,y) in eq.(2.7).

In each rectangular element [x »X. 1] [yn, ], the spline function zr:z{]” (x,y)
’

n+l
for £(2+2) (x,y) are linearly interpolated as,
g'2:2) (x,y) = zn(lf;lz)(x,y) = a‘*zm’n(x,y)/axzayz,
(2,2) = r(2,2) (2,2) (2,2) (2,2)
o (6¥) = LS xy, 4 LI S a XY Y G XY (a1)
By executing an indefinite integration of eq.(Al) twice about x and twice about y,
the following result is obtained,

= 4(2,2),3,3 (2,2 3 4 (22)33 (2,2) 3,3
(x,y) “n n XY + olm n+ +y am-l-i Y+ * am+i n+1%Y-

0,23 0,2)3 (©, 2 ©,2) 3
+(ul’1y+u'y)x +(u+iny+ m+1n+1y)x

(z 0) 43 (2200 43 (2,03 2.0
+(o. x+m’x)y +(“'lx++°'m+1n+1-)y

+ta xy ta (A2)

m,n” + m+1 ,n’ R “n, n-!-lx'l-y mm+1 n+1 Yo
With the condition that Z, n(x,y) =¢(x,y), z(2 0)(x Jy)=et2 0 (x,y), w'”(x V)=
£0:2) (x,y) and z(z'”(x y) £€2:2) (x,y) at each mesh point (x Y, )y the integration

constants in eq. (A2) are given as,

_ cz. (] 0,2 h2y5 (2,2
5 (c AR RIS i gt

%1,3 7
(2,0 = 2,0 _ hz t2,2) ©.2) - 0%, (0,2 _1h% 2,2
%% 3 (‘1,3 B oy ) e0y? =5 (y” - 5 52570,
2
0?12 = (3222, (1=m,m41; yom,01), (a3)
where

ty,y = Slxyy), c‘23°’ = 9%c(x;,y,)/0x2, Ci(?j” = 8zc(xi,yj)/3y2-

C(Z: 2) = ahz(x )/3](23}'2-
i,)

i’yj
By rewriting eq.(A2), we obtain the matrix form of the spline function eq.(2.7) for
t(x,y). The matrix elements inFm , &re given by eq.(A3).
By matching smoothly the first derivatives z(o' D o 2;1;10) on the both sides of
b

the point (x ,y ), the following relations are obta.ined,

h?, (2,2 (z 2) (2,2)) = (2,0 _ 5,%2.0 2,0
(;m n+l + hl; e ,;1- ) m,n+l 2cm,n + cm,n-l’

W2, (2,2) 2,2) €2,2)y = ,€0.2) 0.2 ©.2)
(cm+'1 * l‘cm,xll N ;m—l,n) B cm+1,n - 2;m,n + tn-1,n’

(2, o) + hr(20) 4 2,00 = -

Em l"’-m,n cm-l,n) cm+1,n 2;m,n + ;m-l,n’
(0 2) (0,2) + (o, = -

( * hc °m n-l m,n+l 2Cm n ¥ m,n-1°

With the use of the above relations and the values of 1; n (m=0,1,...,M; n=0,1,...,N),
©0,2) (2,0 2,2) (p=0 M: n= €0,2) 6) 2, z; - _
and £ 02, ¢ 20 and ¢ 22 (n=0,M; n=0,N), £ 02, 229 ang ¢ (m=1,2,...,M-1;
n=1,2,...,N-1) are calculated. The spline function Zn n(x,y) has the upper error
N 0w (4,00 ’
bound O({h /360)(||;m’n H *"‘m,n 1),



