11
On Optimal Multiprogramming for Computation
Centers Having Many Users

Kimio Izawa*

Abstract
)

We consider a method based on the theory of dynamic programmingl to obtain an opti-
mal policy of partitioning the main memory of a computer system installed at a com-
putation center which has many users.

1. Introduction

We consider an ordinary computer system which enables us to perform jobs under ei-
ther multiprogramming or uniprogramming environment according to the policy of the
computation center. We confine ourselves to discuss the case where the main memory
space of the computer is partitioned into domains so that each of them has a fixed
size. Suppose that we know the statistical data on the sum of memory occupation times
of jobs which arrive in a certain definite period in the form of a function of the
size of memory allocated. We assume that, under a multiprogramming environment of de-
gree N, we partition the main memory space of capacity C into N domains such that N=
ZZ:lpi’ C=Zz=lpiui’ and a(=u0)§yl§y2§;--5yn, so that, on domains of capacity u,, only
jobs requiring a memory space of capacity v such that ui_lfpjyi are performed; while
under a uniprogramming environment jobs such that unfpfp are performed.

The problem is, subject to the above mentioned constraints, to minimize the time
needed to perform all the jobs. In this paper, we consider some fundamental aspects of
the problem, and show an analytical method to obtain the optimal policy to partition
the main memory space into domains.

2. Formalization and analysis

Let TN(S) be the sum of memory occupation times of jobs requiring memory space of
size 8 under the multiprogramming environment of degree N. Usually, we expect that the
following conditions hold:

Tl(s)f_T2(8)i"'iTN(s)i... 1)

This paper first appearedmapanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 15, No.8 (1974), pp. 581~588.

* Computation Center, Osaka University

12

T (e)>r (

1Y%= Sl AhdA =

For simplicity we regard the ratios

[
Nt
N~
¥
V
.
!
v
-3
~~
[
~
S
=3
v
!
—~
[N)
N

ki=Ti(3)/Tl(s) (2=1,2,...) (3)
as constants determined in dependence upon the system.
Let P be an infinite sequence <PisPpst > of positive integers, and Pn be <pl,p2,"
':pn>'
For convenience we handle the size of memory space as a real number. We denote C as
the capacity of memory space.

When the computer system is operated under the multiprogramming environment of deg-
(Py)

ree N, we partition the main memory space into N domains Dij (where N=pl+-i-+pn, <pl
:Pz,'°',Pn>=Pn, j=l,2,---,pi, £=1,2,+++,n) such that, letting the size of D&Sn) be
ui?”),
af_uﬁ’n)mgn):. . .=uJ(-Pn)(__,u](-Pn))iug”)=u§§”)=- . ,=u£§2)(=u§pn))i. .
fyéi")=u£§h)=e--=u£P:)(=u£Ph)), ()
pluipn)+p2ugpn)+---+pnu£P")=c. (5)
Note that a lower bound a (a>0) of ui?n) makes sure to satisfy such necessity as

each domain should be able to accomodate some system programs, say FORTRAN compiler,
in addition to user programs.

On the domains D§§”) (j=1,2,...,pi) only jobs requiring a memory space of size v

(B oo (Pp) . (Pp)

such that u; B<v<u, (uO =a) are performed, and the elapsed times needed to per-

form jobs there are equal to each other. On the one hand jobs requiring a memory space

of size v such that uéPﬁ)

<v<C are performed under the uniprogramming environment. We
call such a form of operation of the computer system a Pn-typed operation, and the
multiprogramming in a Pn-typed operation a Ph-typed multiprogramming.

The sum Tx’ obtained periodically, of memory occupation times of jobs requiring a
memory space of size » such that a<v<x (x<C) is given as follows: under the multipro-
gramming environment of degree N

Tu={ fut)av (6)

The integrand fh is assumed to have the following properties:

(F1) The function fh(x) (N=1,2,...) is bounded on the interval [a,C], and has there
finite discontinuity points at most. So that it is integrable, and further the integ-
ral of fb(x) from a to b (a<a<h<C) becomes positive, as fh(m) is positive at any con-
tinuity point ze[a,C].

(F2) There exist constants k” (N=1,2,...) such that

13

fh(x)=k”fl(z), zela,] (7
kl(=1)§k25kai... (8)
ki 2k, /22k /3. .. (9)

Note that Tx is a continuous function of x in the interval [a,C].
We define J(P" (C) (or Jépn)) as

1
J'(m_pns::_. Fu(z)dz (10)
(P
Here, J%‘"’ represents the time needed to perform all the jobs of a definite period
which are assigned to the domain Di?") (lgjgpi) under the P,-typed multiprogramming

environment. The length of time when jobs are multiprocessed is max [J(Pn)

(%)..,n

while the length of time when jobs are uniprocessed, R(P)(C) (or R) defined as

R(P-)=SC filz)dzx. (11)
First, we consider the problem of optimal partitioning of memory space for P,-typed
multiprogramming. In other words this problem is to minimize the time of multiprogram-

med operation.

[Problem I] Find a solution [u J(P" (2=1,2,...,n)] which minimize the target func-

tion max Jgpn)] subject to the condition:

121,2,...,7

{p:un+}>zﬂx+"~+f.u.=c.

(R) asm<h S Sy

Next, we discuss some properties of Problem I.
[Proposition 1] [u J(P" (2=1,2,...,n)] which satisfies the condition (R) is a so-

lution for Problem I, if and only if it satisfies the condition:

(Pn)_ (Pp)_..._(Py)
(E) J1 n -J2 = —Jn n

[Proposition 2] There exists a solution for Problem I, if and only if
C>Na (12)
And when a solution exists, it is unique.

The next proposition gives us a method to solve the problem.

[Proposition 3] Let [u(Fh (P") (7=1,2,...,n)] be a solution for Problem I of P,-

typed multiprogramming. It follows that [u(P), (N -)/k)J(P) (z=1,...,m-1)] is a

solution for Problem I of Pn_l—typed multiprogramming where the capacity of memory is

C-p u(Pn). In other words, in case where n>2, denoting the solution for the latter as

(u‘Pn VcpulFr)(cyy, s{Fn-1) (Fnd(c)) (4=1,2,...,n-1)1, we nave

ugpn-l)
i

(C- D4
(c-p,un)(C))° () oy, (13)

Jﬁpn'l’w-pnuff" (€))=(k /)75 (¢

(N-py) ()
=(k(N Py)/k)J noe) (14)

14

The recurrence equation for Problem I of Pn—typed multiprogramming is as follows:
(1) In case where n=1.
(Pu)
_ 1M (%]
1eaC)= " prie)da,
w®XC)=C, (15)
2
mm(C):SC Filx)dz. J
C/p

(2) In case wheve 7n>2.

Ju(Pe(C)=
© k(N—-px)
a1 (Pe(C) = ha-1(Po-t)(C — patalPa{C)).

BY g (Pr-(C— putaPa)C), } (16

A solution for the recurrence equation (15) and (16), [un=u;P")(C),un_l=u£€§-l)(C

_u(Pn_Q)

=, (P1) s
n-2""n-2 (C_pnun_pn-lun—l)""’ul_ul (Cfpnun_ n-1%n-1 p2u2), and

Pty)st
J;P")(C)] is the required solution for Problem I.

The time spent to perform all the jobs which arrive in a definite period is J(P")

=JiP")+R(P") in case of the P -typed operation.

3. Example

An example will show how to solve the problem analytically.

[Example 1] Decide the optimal type of operation for a computation center where
fi(x)=K(constant)>O (xela,C]).

(Solution)

(1.1) For n=1, the solution is obtained from (15) as follows:

c
PHC)==
wei0)=E,
7
1@ =" b, Kdz=21K(C prar), a7
Prda P
C 2_ C
RPYC)= —xe=p)C
=, Kaz=KE (18)

(1.2) For n=2, letting U and U, denote uiPQ)(C)_ and u;PQ)(C), respectively, from
(16) we have
(Py)

u =uy (C—p2u2)=(0-p2u2)/pl. (19)

From (10) we have
Jz“’=>(C)=%’S:f(mm)(r)dz
Mptea
=SLBK (pit pa=C)- (20)

From (16) we have

Jz(P.)(C)=k(:‘*"").lx(l’n)(c—p:u:)
P
_Ret) pr o — s —
_7—1\(0 pauz— prae). (21)

From (20) and (21) we have

uz=!P’+P’)C_P‘P’a,
P+ prpat pd?

Substituting (22) into (19), (20), and (11), we obtain

P12+ prpat pa

U=

JAPY(C)= %K(C (pr1+ paa},

(et prprt pii=pr— p)C+ prpaa

REXC)= PR+ prpat o2t

(1.3) The general solution is as follows:

,PtPl}a

pips— P-(E"_ nP-)]C‘

. P i
is]
Pips—(Petpaa), T pila
i<i i=1,2,-n
Pipy ’
;S
i~ (Pat Pa-ttee a
m_pﬁ L R ek s *Pmmhéw,””_
. z Pty
ij=1,2 ;i<

J,(P..)(c)=—.——_"""’"*"‘*’; 5 K{C—(m);: _p:)a] R

iP,
0,7=1,2, 05 g5

R(P.)(C)=K{l.j=l,z,z..._,,: i<i
. = Pips
i j=1,2 ;5]

4, Conclusion

Some numerical values calculated from the above result show us that, if we adopt

pipi— i=l,§..., nPi) C+ (._J_l' 2.§.n= .,<II’1PJ) '1.

(22)

(23)

(2u)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

15

multiprogramming in the proper form, we can considerably save computer time required

to process jobs.

1) R. Bellman: "Dynamic Programming", Princeton Univ. Press, Princeton, New Jersey,

(1957)

