100

/mx s o 4

SL/M: A Minicomputer-Oriented System
Description Language

Keiji MAKINO*, Koji TOCHINAI* and Kuniichi NAGATA*

Abstract

In this paper, a new minicomputer-oriented system description language, SL/M,
and its implementation are described. There exists no efficient high level language
for the description of system programs in the minicomputer field; therefore the user
must use the assembly language. SL/M was planned out to solve these situations.

SL/M is a high level language designed for the system program implementation on
minicomputers. It easily expresses a state transition diagram, which in an effective
tool to develop a system program. SL/M is now in use on a minicomputer, and its
processor was implemented by the bootstrapping method. We believe that SL/M is
convenient for the system and utility program production and expands minicomputer
utilization.

1. 1Introduction

In many cases of minicomputer applications, the minicomputer is used at the
minimum construction, for which there exists no efficient high level language. And
the user, who is mostly unfamiliar with computers or programming, must use the
assembly language. The programming in the assembly language demands that the user
have a knowledge of hardware. Moreover the small scale minicomputer has many
inherent constraints, e.g., the smaller main memory capacity, the small direct
addressable area, a small number of registers, and so on. They result in increased
programming time, frequent errors, and difficult debugging.

The SL/M is a new minicomputer-oriented high level language for the production
of system and utility programs. Owing mainly to its simple structure, it can be used
even by beginners.

2. SL/M Language
2.1 Considerations in System Description

The design and production steps of a system program are analyzed as follows.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 17, No.3 (1976), pp. 207~214.

* Department of Electronic Engineering, Faculty of Engineering, Hokkaido University

101

1) Determine the input, the output, and their relations on the entire system.

2) Comprehend the global image of the process from the system imput through the
system output, and decompose the entire system into subsystems.

3) Decompose each subsystem into subsystem units which realize elementary functions.
4) Decide the actual action of the elementary subsystem unit.

input output
‘

H

i

1)

5) Write the program.

In the above analysis, the efficient tool memory part

i
H
1
is the data-oriented description method 1like the [:] j [:]
J

1
11

control
part

ne L

state transition diagram for step (4), and the

entire system is represented as the compositive
graph of both. On the above concept, each sub- Pig.) The structure of an abstract machine
system is modelled as an abstract machine shown

in Fig.1, and is specified by the graph repre-

sentation shown in Fig.2.

2.2 Structure of SL/M

SL/M is constructed from the two descriptive

S~
{-=== SiiMit [ACTION3i} Sj,----
SiiMit (ACTIONSiLY S,)

parts corresponding to the abstract machine.
The whole syntax is given in the appendix. Fir2 Tha stutc dinrren vepresencation
o Memory part

The memory part is specified by "declaration statement". The general form is

DCL~v1,v ,vn; y,where vy are simple variables or one-dimensional arrays.

POIED
A sata type is a one~word-length bit-pattern, which is represented in the
program by an octal number or a character string, and its interpretation is subject

to the user.
o Control part
The control part ie represented by "executable statement” and "SUB statement”.
A SUB statement represents a series of transitions.
An executable statement represents the elementary transition of the abstract
machine. The general form of an executable statement is as follows.

S,: ON(condition) actions; GOTO S, ;<cr> ,where ¢cr> denotes a carriage-return

i b}
code. The "condition" is modified by the "specifier" (e.g., ON) and, as a result of
its interpretation, the "executive condition' decides the method of execution for

the rest of the line. This language has a congruence with the practice of the usual

102

procedure-oriented language, but has not the purely independent concept of comntrol

statement which is common in other languages.

For "condition", the following representation is admitted.

T0 & T1,T2, ... ,TN
(TO=T1) Vv (T0=T2) V ... V (TO=IN)

(TOAT1) A(TOAT2) A ... A (TOATN)

,where ais a2 relational operator.

This is interpreted as

They are equivalent to the following relation.

ty € {tl’ tos oo 'tn} (for =),

if the relational operator A is "=",
otherwise.
to & {10 £y - e} (for\a.

The elementary actions (ACTION) of an abstract machine are described by

elementary executable statements.

These are classified on the three classes:

input

(to memory), output (from memory), and memory rewriting.

The assembly language may be embedded by a PROC statement.

The linkage between

the embedded assembly language vart and the SL/M language's body is performed through

the identifier or by the subroutine-call form.

3. Example of SL/M Program

Fig.3 represents the syntax of an
assignment statement and its analysis
process. And the program of it
written in SL/M is shown in Fig.4.
4. Implementationl)

The SL/M compiler is produced on
a NOVA 01 minicomputer with 8-kwords
memory, a teletypewriter, and a paper-
tape reader by the bootstrapping
method?)3)The compiler is a 2-step
stream-data conversion type composed
of an analysis phase and a code gener-
Its delivered data is

ation phase.

represented by a machine-independent

intermediate language based on the modified Polish notation.

<assignment statement> == <variables=(¢oxpressions ;
¢ expression> == (<v.:riabls> I ((cxp:‘és:ion))){?' (*,/) '(*l-)}
¢ varigbley == <letter> ((digit.)]

a) The AN notation representation

assignment statement

—{Variable (=) expression -w{({ F———————n

expression
varinstel
~] T variadle)

———d T
Olmmma0) O 0 O b
L] 1 1 A]
variable

—Teiter}

oAAd-29,

d;:x:}—!

b) The grashiecal representation

main program

! ~/RIAD -/conv @)_-[w"*r ,

ment

expression

X

éﬁﬁ"L(/Pn @) _~/EER) /577 l:t)o

oprerator/sTs

¢} The transition diarran representatica

Fig.3 Represcntetion of assimment ciaiesent

Each phase is composed

of the modules realizing the logical function unit, and has the hierarchy structure.

By the above design concept, the inner structure of the compiler and the control

relation among the modules are clear, and the expansion or modification of the

compiler is easy.

. roSTaie
e LNPUD RTRELRT 2 1TSS PUINTLR
RIS . P
. UUIPDT BULIFLT & UTS POILTLRS
L b1, 1
® STAU< & TS DIINTEYS
[N N T R P H
CIndLEs
. © PROGRAF
MeI: CAlL READ: CLALL CuNY: Lall WAITED il ol UREALCH 2 7a 00t
PAOL;
LoA 2.1t
ReAD: SULT Loa 1.tz
MOV 1,
noi: 5oOUTIIL AU 1.3
1ipidaus STA 0,14
; Enb:
SUTOIEL 2 BUCPOI IS pushOels
e ENU:
LE1R DERAENE)
[
KT 0RO 0PYY Ci eV, BOLPOYY; EEEEPRINE PN ¥
FEIYST PR e
s
Crda /s LR S0 7) 0
i Pusl; P5S*M: CALL mSST
CaLL ERRIN;
o PUSH-LUUNS
PO: SUWs
“5") CALL LRUORS PSTPSe1; STACKCPSI= (Cinsi +
NG
s
« POP-UP;
T SSIUNG POP: SUB:

TCPIINR™(") LALL VAR: GOT, -
o Bl CALL MKPM
d) CALL ZRRAGIG
* END OF SAMPLE PROGRAW;
Citieen
sTop;

TR PENTA

BOCPY) =STACKCPS) S 25=0o- 1)

103

1 tEeal(ri: preliels

EYRTH

EES PRETR T

L uuTy Seus

Plg.d An exanple of HL/M progtam

5. Conclusion

In SL/M, anything associated with a single transition on a transition diagram

can be easily described by one "executable statement" in compact, understandable form.

The program is directly converted from a graph representation given by the analysis

of the objective without going through the flow chart representation. Therefore, by

SL/M, even the beginner, who is unfamilijar with computers or programming, can easily

make necessary software on a small scale minicomputer.

The language structure is simple, the function included on SL/N is not very

wealthy?)and certainly addition of other functions might be suggested. However,

considering the minicomputer-orientation, this language is fairly powerful in the

system description, and the present system balances in functiomns, convenience, and

hardware limitations (e.g., memory capacity).

The size of the compiler is shown in

Table 1 Size of SL/M compiler

analysis code generation
phase hage
Table 1. In the bOOtBtTaPPiT\S processes source program about 280 about 230
(gbg;xlx all states) lines linea
object program's about 2100 about 1300
using SL/M subset, the degree of errors atructl t ate ateps
explicit states 76 50
(labels)

was 1 error/100 lines on the average.

104

Reference

1) Special Edition: ETL's System Description Language, Bulletin of the Electro-

technical Laboratory, Vol.34, No.5-6, 1970 (in Japanese).

2) Kokubo & Saya: A Compiler Writing Language BPL, J,.IPSJ, Vol.ll, No.6, pp.342-349,

1970 (in Japanese).

3) Earley & Sturgis: A Formalism for Translator Interactions, Comm.ACM, Vol.13,

No.10, pp.607-619, 1970.

4) Yamada et al.: Studies of writing a FORTRAN compiler using FORTRAN language,

Bulletin of the Faculty of Engineering, Hokkaido University, Japan, Vol.73,

Pp.71-83, 1974 (in Japanese).

5) Wada: ALGOL N, J.IPSJ, Vol.1l2, No.9, pp.556-567, 1971 (in Japanese).

Appendix: SL/M syntax (by AN notationS))

<DProgramy == [((fleclaration stntemenhl
<executable statement>|<SUB statement>l
<comment statement>)<cr> vee S’I‘&)}‘[udabeb] i<cr>
<«SUB atatement> == <labecl> :SUBj«<cr>
[(<declatation atatemnbl«xocutubla statemenbl
<SUB statement> |c<comment atatemnt))wrrl..- END;
<comment statement> == ’[«:hu—acteb oo
<declaration statements> == DCI‘_(ddenufieb
(:(conatant)' t<octal nunber))]){,} .or
<executable atatement> == <labal>!]
[<executive conditiom] s
[cpri.mitivo executable stntmonb;]...
[(GOTO atatementn]
<executive condition> == <specifier>(<condition>)
<specifier> == ON
<conditiony == <term><relational opentorutem}{,} cow
<relational operator> == -I(|>'(<=I=<)I(>=I=>)I
(\=l=ub>eles)
primitive executadble statement, == <¢null statenenb'
«assignnent statement> I <CALL statement> |
<PROC state:nnnt>‘<HALT statement>|
<IN statemen\»l(om‘ statement>
<null statement) ==
<assignment statement> == <vat1|ble>=<tam>{+|-|’|&}...
<«CALL statementy>* == CALLdabel>[(<tem>{.} vee)]
<«PROC statement,%# == [<lab01)= PROCj cox>
«:haracter»]... «cr>je.. END
<HALT statement> == HALT
¢IN statement> == IN{<octal number;.(variabl»(,}...)
<OUT statement> == OUT(<octal nmnber),(«om;l/){,} ees)
<GOTO statement> == GOT(Q_<label>

<label> == <identifiers
<term> == <v¢riab1e>'<con:tmt»
<variable> == <£dentifier>[((<xdontifienlcconatmb))]
<constanty == <octal nu.mber)'(charactex‘ atring,
<identifier)*#* == cletters> [<alphu—numoric> oo
<octal number> == ¢octal digitr...
<character string> == "[‘any character
except for " >|..,.
<tetters == alslclolslelolultlslclulnlnlolelelr]s]el
viviwixiylz
coctal digit> == 0|1[2]3als]6 7
<alpha-numeric) == <lotters|coctal digit>|sl9
«character) == cany charucter on teletypewriter
containing space)

<cr> == ccarriage-returns

On the CALL statement, parameters are permitted oaly if
the called subroutine is described by a PROC statement.
** In each line of PROC statementi's body, the first
syllable must be except for "END".

w+* The scope of identifiers covers the entire program,
and tne first four characters are used for tne
identification. Xey words are the reserved word.

