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Test Method for a Computer Program
of Characteristic Equations

Yukuo ISOMOTO* and Yoneko GOTO*

Abstract
At the present time, there are many library programs for characteristic equations.
But, owing to the variety of the programs, a programmer is often unable to determine
which program is the most appropriate for his aim. Unfortunately, there are few

1)

powerful methods to test the reliability of the library programs™ ’. Actually, some

3)

2 . .
textbooks™’ show only test matrices. In this paper, we show a test method for the
reliability of the library programs for characteristic equations of real symmetric
matrices. The test can be carried out without the detailed knowledge about the

algorithm of the tested program.

1. Introduction :
The test method for characteristic equations is formulated to fulfil the following

two requirements with a similar motivation to that of refu).

(1) The results of the test can be estimated under a certain mathematical criterion.

(2) The test is systematically executed in a simple mechanical technic.
In order to fulfil the requirements, the numerical solutions are analyzed with some
mathematical properties of eigenvalues and eigenvectors. The results of these analyses
give us a certain standard to estimate the errors of numerical solutions. Furthermore,
in our test method, the test matrices can be generated with known eigenvalues and
eigenvectors in an arbitrary condition(for example, the test matrix has a very large
and a very small eigenvalue). Then, we can test a program under an arbitrary condition.

The test matrix A is not necessarily large dimensional. Then, the test can be

economically executed with the use of 3x3 dimensional matrices.

2.Characteristic Equation and its Approximate Solution :

-
Let A be an nxn matrix with eigenvalues Ai and eigenvectors xi, i=1,2,...4m:

Az, = A3, . (2.1)
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N
An approximate solution (Ai,x{) of Eq.(2.1) can be expanded with the exact solutions,

—* -
x = (1 - 6 x, +68 ) a, . x, Al = .
g * .Ji;zéi 1550 A T Aoy (2.2)

The error vector 63{ is expressed by the form: szi=§£-}i. Here, 51 is the component
> -

of Gxi parallel to xi, and 61 is that perpendicular to the ;i' 6Ai is the error for

A%.«d and éi are determined with the orthonormalization of eigenvectors. The inner-

> > . > >
product between xi and xj in Eq.(2.2) yields: § a, ,=<x!<x >, i#j. On the assumption

11ij i
| £ a,,%,]=1, a,, satisfy the relation: I a2 =l. So that, we can obtain the
*15%3 iJ .13
J#l J#i
following expressions,
§ =v/627 a2 ./z<x.x>z
1 1,9.713 4 2.
J#l lJ J#l ( 3)
8§, = - .
i1 <x x 7 (2.4)
a,, = <z op :
19 T FyEP/oL L g#L (2.5)

Any real floating-point numbers generally have the relative error A which depends
on an individual computer. An approximate solution (A i,x ') is expected to be solved
within the error A. Thus, the angle Q between the vectors Axi and Aixi should be

approximately equal to zero within the error A.

0 £ |1-cosq| = |1-cosal (2.6)
where
! - 2 ZZ 2
AJ (1 di) A+ alj#iainJ
cos = T . /
' - 24827, _ 232,12 2 2
|Aj| [(1 ci) +62]-[a 5,) r2es2 z j}‘j]

The difference between the lengths qu{" and ﬂk!;!u of the vectors A;; and Xi;;

<
should satisfy the following relation: f = [“Am - "X z! “l/‘xmax =8, (2.7)
t = 232482 2 32 vl=v2_22
Here, Ax =/(1 6 ) ki+6 J:la JXJ and A iz V)i (1 Gi) +6L]'

The value of |6;i| depends on A. If Ai and XJ are multiple eigenvalues,

orthogonality of ;i and ; can not uniquely determined. This is one of the causes

J

>
for the error vector Sxi. For example, when Ai approaches to Xj, it becomes

> > >
difficult tc determine the orthogonality between the vectors xi and xj. Then, xi may

have much component of ; . This means that IGEiI becomes large. Thus, the value of

J
> ->
|6xi| may vary as the (Ai,xi) varies. And also, Gi, Glaij and sxi have the same
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causes as Gzi. On the contrary, f and [1-cosﬂ| should be suppressed by the upper
boundaries A and Il-cosA|. Therefore, it is reasonable to observe the systematical
dependence of 61’ 51’ laiil and Gki on (ki,;i), and the independence of f and
|1—cosﬂ| from (Ai,;i). If the results of the test do not satisfy these conditions,

we should suspect the reliability of the tested program.

3. Test Matrices:

The test is systematically executed in a mechanical method. Then, the test
matrices A need to be easily generated with well-known eigenvalues and eigenvectors.
In concentrating our attention on an eigenvalue Ai, we understand that Xi surely
satisfies one of the four cases: (1) the smallest, (2) neither the smallest nor the
largest, (3) the largest or (4) degenerate with another eigenvalue. All of the four
cases can be realized in three dimensional space. So that it is enough to use three
dimensional matrices for the test about eigenvalue dependence. On the one hand, the
eigenvectors need to satisfy only the orthonormal relation. Thus the test can be
satisfactorily discussed in three dimensional space for eigenvectors too. Then, we
discuss the test with the three dimensional matrices A and X.

Now, Eq.(2.1) can be rewritten in a proluct form of matrices: AX=XA. In three

dimensional space, the matrices A and X are given as,

A, 0 0
A= 0 2, O (3.1)
0 0 A3

cosBcos¢pcosy-singsiny cosBsindcosy+cosdsing -sinbecosy
+> > >

X = (x),2;,r3) ={-cosbcos¢siny-sinpcosy -cosfsingsiny+cosdcosy sinBsiny ) (3.2)
sinBcos¢ sinBsing¢ cos6
5)

where (¢,0,y) are Euler angles of a rotation matrix”’. Thus A can be generated with
A and X: A=XAX". (3.3)

By controlling the parameters ¢, 6, ¥, Ay, A, and A3 in Eq.(3.3), we can construct
mechanically any test matrices. For observation of the relative error of an eigen-
value and an eigenvector, it is enough to notice the relative magnitudes of eigen-
values. Then, if X, and A3 are fixed as constant parameters, the error of (A{,;{) is
analyzed for the variables A; and (¢,6,w). The results of the test can be plotted
against Ay and (¢,08,¢) in cylindrical coordinates. A; and (¢,6,y) are plotted on the

plane perpendicular to Z-axis. (¢,8,y) are varied from the initial to the final point

in three dimensional space under an appropriate condition. The trace of the angles is



plotted in the surrounging of Z-axis.

end ¥ are fixed, @

b

is plotted around Z-axis. |6;1|, SAy,

aij’ f and ¥(l-cosQ) are

plotted along Z-axis.

81, GJ_,
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Given eigenvalues A; and X, in Eq.{3.1), an
a matrix X in Eq.(3.2) with a certain value
of {($,8,0}. These are fixed in the whole
process of the test.

. of an eigenvalue]
min
A1 in Eg.(3.1) and its increment step

Give an initial value A

arameter AX.

4, Test Procedure and Example :

For simplicity, we show an example
to test a program about Aj. The test
procedure is shown in Fig.l. In this
test, we assume that (¢,6,y)=(45°,20%
45°), A,=1.1 and A3=0.9 are fixed.

The eigenvalue A} moves from xmin to

|Generate a test matrix by Eq.(3.3).

Solve numerically a characteristic edhéﬁféﬁ?
for the matrix A and obtain an approximate

solution (A{,z]) in Eq.(2.2) by the tested I
program.

&
Calculate § (by Eq.(2.3)), 8ip, |62y ], 67 |

(Eq.(2.4)), ap and a3(by Eq.(2.5)), cosQ(by ;
Eq.(2.6)) and f(by Eq.(2.7)) |

'S
|Make the value of Aj be Aj+AA. )

YES

>
Anax DY the step AX. Fig.2 shows | 8y |

51 and v(l-cosQ) against Ay. Fig.3

Fig.1l Test Procedure

shows 8);, f and §; against Ay. For convenience, 1) is plotted with a logarithmic

scale in areas 1210 and A;%0.1, and with

<. <
a linear scale in an area 0.8=1;=1.2. There

<
are two blank areas at 0.8h5§A)§O.950 and 1.0h5=x1§1.555, in which the tested program

cannot solve the given equations because of multiple eigenvalues of 4.

The results of the test predict several properties of the program. The test is

executed with a computer in which a

1

+ -
log|éx;|, log/i-coss and logé

-7

Gll‘.

real floating-point number has relative

error 10-10 are very

|6%1| and &,
large for small values of A; and for
nearly multiple-eigenvalue state.

/(I-cosQ) are expected to be constant
independently of A;. But /(1-cosQ) in
Fig.2 strongly depend on Aj. /Ti:33;§3
are nearly constant for the test of

another program. Why do v(1-cosQ)

strongly depend on A; in this test?

We feel something questionable in the

1
-5-3-10.8 1.0
logil S
Fig.2 PResults of the test for

|6;1|, Y1l-cosQ and 61.

tested program. InFig.3, |6X;| and f

get very large for small value of A;.
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The trend of {6A;| end f in Fig.3 has
a common cause of |6z,| and v{1-cosQ)
in Fig.2. Near multiple-eigenvalue

state, f does not strongly depend on Aj.

5. Conclusion :

Some programmers who make use of
library programs often want to know
general property of these programs.
By the aid of this test method, a
programmer can test the programs with
only those specifications without the

knowledge of those detailed algorithms.
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Fig.3 Results of thetest for

|6xy], f and 6;.

If the programmer specifies only a test condition, he can estimate the reliability of

the program under the condition as shown in Fig.2 and Fig.3.

Some algorithms give a part of eigenvalues and eigenvectors(for example, the larg-

est eigenvalue). Fortunately, the test method uses only one set of an eigenvalue and

an eigenvector. Thus, it is possible to execute the test for such a characterisiic

algorithm. In this paper, the relation between the errors and the mathematical

properties of A are discussed. But the problem about an accumulation of round-off

errors is left to be opened.
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