36

APL Interactive Processing System
on a Minicomputer

Toyohide WATANABE*, Fuzio MIYAW AKI**, Katsumasa WATANABE***
and Hiroshi HAGIWARA***

Abstract

This paper deals with the presentation of an APL interpreter implemented on a mini-
computer (HITAC-10). It includes a syntax analyzer which translates the external APL
language to an intermediate language. The analysis phase consists of two steps in
order to distinguish unary operators from binary operators and so on. First it scans
from left to right and then-from right to left. Moreover, during execution of all APL
statements, dynamic storage allocation is used. Since there are insufficient data
storage in the main memory, this system makes use of different kinds of data manage-
ment techniques.

We will describe the processing method of the APL interpreter and show the design

concept used to make APL match a minicomputer's characteristic.

1. Introduction

APL(A Programming Language)[1] was first defined by K.E.Iverson as a machine-
independent programming language whose descriptive and analytic powers were adequate
to consisely describe algorithms. There are features which distinguish APL from the
more traditional programming language such as FORTRAN[2]. Some of its features
include; (1) it allows a clear and simple representation of the sequence in which
speps of the expression are evaluated; (2) it provides a concise and mathematical
notation for the operations occurring in a wide range of processes; (3) it permits the
description of a process to be independent of the choice of a particular represen-
tation of the data.

We were interested in actually making use of & programming language with these
features and have implemented such a processing system on a minicomputer. From the
point of view of the implementation, we aimed at making APL match a minicomputer's

characteristic.

2. Outline of Implementation
Processing Method

This system takes advantage of an interpreter approach, with a consequent loss of
execution speed. The source language is translated into an intermediate language
which we call the step-sequences, and then the interpreter continuously evaluates it.
Fig.l shows the data flow on this system. Here the processing data divides the
processing path into two modes: execution and definition. 1In execution mode, this
system produces the intermediate language and then evaluates it; and in definition

mode, this system only preserves it in system file without evaluation.

This p;per h;;{gppeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 16, No.9 (1975), pp. 781~788.

* Data Processing Center, Kyoto University
** Himeji Institute of Technology
*** Department of Information Science, Kyoto University

37

With the absence of type declarations and DIMENSION statements, an attribute of the
variables can't be decided until values are actually assigned to the variables during
execution. Accordingly, we can't adopt the use of a compiler to generate efficient
codes. But, when defined functions are called, this system evaluates the step-
sequences preserved in definition mode because it is not very effective to evaluate
the source pattern directly.

System Congtruction

The hardware construction consists of HITAC-10(12kW), Magnetic Drum(131kW) and a
typewriter with an APL typing-element.

The number of the program steps are more than 20,000 words; 1 word is 16 bits.
Also, this system deals with many areas and tables. Therefore, an overlay method 1is
required. The memory map in Fig.2 shows two phases. Namely, as the processing
procedure is composed of a translation part and an interpretation part, the overlay
structure of this program is also constructed to make system performance more
effective., We designed with a view in: (1) making system performance more effective;
(2) making this system match a minicomputer's characteristic; (3) making the program

structure clear.

3. Translation into Intermediate Language
Translation Process
The syntax of APL has characteristics as follows; (1) a statement is evaluated
sequentially from right to left, but an expression in parentheses is looked on as an
operand; (2) there are not priorities among many primitives; (3) many primitives
operate not only as unary operators but also as binary ones; (4) there are neither
type declarations nor DIMENSION statements; (5) whether or not a statement is an

output one depends on its sentential form.

The analyzer has to scan from right to 0 system var.
left because the evaluation is from right 1 ZZ:%ZOiAETO-
»|input N [fexecuiion]
source pattern [S 7 edit r. cqn?qu r.
NI | a|L-stack | rimitive |
INPUT/EDIT error 2ot -1 construction r. execggto:]r.
—_y inner pattern | 1L OR _ r_[resﬂ, en
M command r. overlay
———comment — —__§ 5 5 step 15021 i
— command — | —>{3 sequences r.
—erase- —>{) ¢|function
ANALYSTS — function head) edit . primitive
error. R N - |routine i | _execution r. |
3 def.m. overlay port [oveg}ay]
N letep_sequences] ¢ltable & area unction
. | toverlayi area
def, gpregervation . —l i i
EXECUTION S
error. N
_input m. _ ____ 1
reoult |=25=s=2tensss 7 table.& area < Interpretation
i —_asgign 41 | rresidentl part>
exec.m. < - r. :routire
output 10 var. :variatle

MODE: exec.m.= def .m.ey input m.=z3 <Analyeis ert> pro. :programw

Fig.l Flow of Processing Data Fig.2 Memory Mep

38

to left. But we adopt two-step scanning. First, inner pattern
LA~ B+ 6L 01,8,
when scanning from left to right, the analyzer SCANNING . Pt:.
ANN N Frour I b
edits variables and constants and distinguishes TABLE'l 3 jLstack
[}

an unary operator from a binary one by whether N

there is a left operand or n

ot. Next, it pro-

duces step-sequences on scanning from right to

left. This is because it can't scan string

letters continuously if a parsing process is

only one step. Lsc=

.Scanning from left to right

The analyzer translates an inner pattern into

an entry pointer for each table and fills in SCANNING

) 4
L-stack; L-stack with 2 tracks consists of the TABLE ‘)(’P'”g“":" =]r‘g:lleé“d‘g&]

w [
operator and operand parts. It is shown in Fig. ©|B | % TTIL':E‘&““"‘ “
1A 3

3. SCANNING TABLE I(Table 1) indicates an action) ERdmoditler

866> 1PC,LSC. RSC.
by comparing an inner pattern with an operator of SCC:counter
L-stack. Fig. 8 Flow of Syntax Analysis from

Innerpattern to Step-Sequences
In addition, this phase takes roles as follows:

(1) distinction of either unary or binary operator; (2) decision of a sentential form;
(3) level-count for "(" to ")", and "[" to "]".

The distinction between unary and binary operator depends on a D—flag(do,d1 in
Fig.3). This is a 2-state flag which points out whether the next primitive is either
unary or binary; if the D-flag is dO’ the next one is unary; otherwise, binary. An
action of SCANNING TABLE I starts out first by checking the D-flag and stops by re-
setting up the D-flag.

.Scanning from right to left

In this step, the analyzer transforms the entry pointers into step~sequences. An
action of the analyzer under SCANNING TABLE II(Table 2) is selected from a combination
of the primitives between L-stack and R-stack. Basically, 1). when L:>'R;, (a) a
step-sequence is composed of Lp.patt in L-stack(in the case of unary primitive), or

(b) parts of L-stack .. scummc TABLE |

are transfered to] - lend
ch‘i : l - l - , J , (] : func 14 p@l . oo \::uorﬂ'. mark
a
R-stack(in the case [M° - [! - T
he errov h error 4 : . error P . h
lu I lenor error F!-# (; Ls: i [LSip €rror | error | iK%
of binary on:). . b’l 5._"‘ %ikl‘ b w.l‘"' ‘:’;:; L E»
emor
¢ s
ii). when LP< Rp’ ok b ke 4 '[}”"
error jerror | 180 ervor 'a
a step-sequence is Py en
4
composed of Rp.Part s |OTOT &f by t‘f b oee L h‘.‘ Lh-‘ e or Fisiw [iga P
. 1 1 error (L$: : g H ermol : o [dLe-
- exc- Ll At} ILt) : A Ligy i Lwfe
in R-stack. ept T, qv»mlrc—k-l ‘ | | i LS 4“:.."7.3"!4«5\'/' L 4 futs
111). vhen L'z ®" e OB B | | e
. = (3 o) is: e 1L030 g e
p P g L | J.L;f error
either 1) or ii) is ‘ L, RN -
selected. 1 4 or - Koon o (B Fin s 8™ 2o
. error | L= /e : o |18 p enor
Remarkable Point o ATAL BTk M9 1@ "‘5,, .
. b ?f ¥ [godl L L, o
at This Stage Uit arror g M T P ¥ [
: : : : o
A0 ne |error fiiu | ferror [l Y
A statement which a error “ “ “
eror | letror

contains an unde-

result of syntactical analysis is different from that of the definition, this system

rearranges the step-sequences at the stage of the function call. This fact depends
that with the absence of declarations it is not completely determined until a function
is defined. But this problem could be avoided if such a system adopted a method such
that on the function call inner patterns are translated into step-sequences. We
adopted this method which preserves step-~sequences in order to make evaluation
performance more effective.

Consequently, this method contains other merits: it does not have to register a
defined function uselessly by means of checking all of the statements of the function
at an early stage. But, the demerits of this method are as follows:

i. on re~definition, one must use the same process to produce an intermediate
language once again;
ii. it is difficult to reproduce a source language from an intermediate
language;
iii. there is a problem where one can't exchange an attribute of the name freely.
In the case of ii, we decided that the registered structure of the functions had

both step—-sequences and inner patterns; and in the case of iii, this system exchanges

-~ o ad
LTUnctiomn.

=]
<

the attribute automatically only if the attri ariable to
4. Usage of Data Storage

Manipulation of Data Storage

As the attribute and size of all variables can change in an unpredictable way, the
variables can not have fixed areas. For each evaluation step, a data area must be
allocated for a variable. But, as there are no sufficient storage in the main memory,
this system must have means to make use of limited storage as effective as possible.
During execution, each primitive execution routine checks up the attribute of the

operands and reserves a data area for the result. In this case,its routine checks up

whether or not data Yable 2 SCANNING TABLE Il
areas which are Ry 0 0 0 0 0 3 2 2] 2 2
R
allocated for tempo- ¢ o I] ! y [6) ¢ [N ot A = | Ll
R g v v v v v
rary results can be 1| 8 jerrer EhyPiiaib Sund I VR N WU It
| P e ey Y| sty
reused, releases if - > . b5 ae [tSimw M |1 R
u ’ 1 @ RoF [tDE (iR L Sy [iaen,
‘mock i, | Rei—
possible and then = Ll 1?;9 (= e R R T,
1| - P -) smw | TOR
allocates the areas. ,}6'-‘ Han LI i W i
Lk, 8 e “op (MR
LTk, ol P (ﬁ&a
While, an end process 1|i# : RS g w?
? — Limw /=0 R-TENP
1 : out pro ~
routine releases L — :_"““‘ :""f“ ot e isfes
which h 1 e\ Hg g R D Fampel -
areas ch eac 15 prd e s TN
> (LR, TEMP
routine couldn't do ne Ty ro o N
e P ol R TN (kT
nt Siepw] 8o-TEMP 1 TE
so; that is constant. 1|1 Pirte > Ll "Terror R
jerror » ({9 2% /)
Structure o, 1 Lie T, 700
4 HIK >Rk iy
Data Storage 7 L WIAY
% 2l s [o RS e Ton, St
In addition to a - - ey
3|00 pread (L, TENP) ﬁ;—luj read
useful manipulation ST iS:r R TENP : ot
7
of the data storage 1K [error >

40

we divided ir < Global Variable Table > _— =< Array Data Area>
by itself into name attribute|size |data p. dh:B.E

two kinds of / T\‘;‘o:f" PrAG N MWS B’i

areas: function blg -------- W b7 - -pg columm | X'o!; / .
mpty I&;{Gai
v

empt
data area and FLAG I-Ef%c. X'FFFF';
global data area. scalar no value <Scalar_Data Area >
vector 7
As constants used matrix
character N

in défined func- - ,
constant
tions are re- variable // g*" x
quired only on flab:%) empty p.
‘unction
evaluation, the /// < Drum Table >
system loads them < Global Constant Table > K veveree| drum |datat |data2
to a fixed data Iattributglsize Idata p:;?] |- P- p.
! t t
area on the func- < Function Table > Mf/y///
tion call. This |ngme attribute| drum p. |core p. p. ;pointer
not only facili- Pe fue. ;functional
bl5- bi3-- - -- b8 b7---- Ff‘ﬁg,, used counter
tates to edit nd,f' od
% % undefin
constants of de- [LAG I . -fue. X'FFFF':
[funetion type .3
fined functions, pesult defined
but also gives funetion

merite to make Fig.4 Data Entries

use of the data

area. On the other hand, the global data area is futhermore divided into the scalar
area and the array area. This is because we assume that the usage of a scalar is
large even though APL is excellent enough to deal with awrays. In the scalar area,
the data cell is 2 words; all empty cells are composed of a list structure. Also,
the array area is a list structure of variable-length data cell which is attended
with 2-word information cell. This information cell links each data cell in spite of
whether or not each data cell is empty. One word is a pointer of the list structure
(e.g. O\,(h2,0l3 in Fig.4), and the other one is a flag which indicates whether or not
the cell is empty(e.g. (3:,B,Psin Fig.4). In the case of being empty, it points that
the cell is empty(unused); otherwise, it is a reverse pointer to an entry table. A
garbage collector first reconstructs the cells using reverse pointers. Second, it

rewrites the data pointers. And finally it produces more data areas.

5. Conclusion
There are several problems we must consider. On the defined function, this system
adopted the method such that the step-sequences were evaluated on the function call
after preserved in the form of the intermediate language in order to make system
performance more effective. This led to the problem of the transition of the
attribute between functions and variables. But the problem must be investigated from
the point of view of both effectiveness and dynamic features. In the future, new

ideas will allow to make system performance effective[3,4].

(1]
2]
[3]
{4}

41

REFERENCES

Iverson,K.E. : A Programming Language, p.286, John Wiley & Sons.Inc., New York
(1962).

Falkoff ,A.D. & K.E.Iverson : The Design of APL, IBM J.RES.DEVELOP., 17,pp.324-
334(1973).

Hassitt,A,, J.W.Lageschulte & L.E.Lyon : Implementation of a High Level Language
Machine, C.ACM, Vol.16, No.4, pp.199-212(April,1973).

Thurber ,K.J. & J.W.Myrna : System Design of a Cellular APL Computer, IEEE trans.
on computers, Vol.c-19, No.4, pp.291-303(April,1970).

