Information Processing in Japan Vol. 17,1977

Algorithms for Formula Manipulation Based upon Hashing Technique
and their Applications to Pseudo-Boolean Programming

Masaharu IMAI*, Yuuji YOSHIDA** and Teruo FUKUMURA*

ARSTRACT
We propose algorithms for formula manipulation of Boolean functions and pseudo-

Boolean functions. They are based on hashing technique and take O(m) computation
time, where m is the number of terms involved in the function being processed. The
performance of the algorithms is verified through some experiments. They are found
to be successfully applicuble to the pseudo-Boolean programming algorithm.

1. INTRODUCTINN

We propose algorithms to simplify(pseudc-)Boolean function, which are based on

(1)_

hashing technique Our algorithms are applicable to (pseudo-)Boolean functions
with many terms for the following reasons: (i) Our algorithms can simplify these
functions in O(m) computation time, where m denotes the number of terms in the func-
tion; (ii) The test of whether a term consists of only one variable or not can be made
in constant time.

2. RNOLEAN FUNCTION, PSEUDO-RONLEAM FUNCTION ANMD THEIR RFPRESENTATION

2.1 ROOLEAM FUMCTION ANMD PSEIIND-RNOLEAN FUNCTION

First, let x:j e {0, 1} for § =1, 2, ..., n, and let X denote the vector (xl, X5

ey xn). In the following discussion, Boolean function and pseudo-Boolean function

will have the following form. Let a Boolean function F(X) be written as:

n

321 xJeiJ, (i=1,2, ..., s) (1)

F(X) = uy2) F(X)5 Fi(X) =10

where y and I denote logical sum and logical product, respectively, and xieij has the

value of X, if e,, =0, x, if e

J id J 13 iJ
Let a pseudo-Boolean function y(X) be written as:

=1, 1 if e =’c,or0:t1.“ei =f,

J

y0 = 1% e v (05 v, 00 =10 x %y, (=1, 2, ..., m) (2)

J=1 73

d, = i =
3 ij has the value of 1 if diJ 0, or xJ if diJ 1.

The pseudo-Boolean programming algorithm minimizes the pseudo-Boolean function

where ai's are integers, and x

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 18, No.7 (1977), pp. 639~647.

* Faculty of Engineering, Nagoya University
** Computation Center, Nagoya University

154

155

given by eq(2) under the Boolean constraint F(X) = 0, where F(X) is given by eq(1).
. : A Boolean function F(X) is said to be simplified if all F{X)'s
consist of at least two variables and are distinet to each other.

DEFINITION 2. : A pseudo-Boolean function y(X) is said to be simplified if all
Yi(X)'s are distinct to each other.

2.2 INTERNAL REPRESENTATION OF FORMILA

A Boolean function P(X) is effectively represented in computer storage as

follows. Every term Fi(X) in F(X) is associated with a pair of integers (01, Ti)

determined by eq(3).

= J-1 - J-1
oy = ZJeIi 27, 1y ZJeJie (3)
where Ii and Ji are defined using N = {1, 2, ..., n} as follows :
L, =0l Jen, (ei =1)y (eiJ = 0)},

J

(1)
3 {3l 5enm, (eiJ

v (eiJ £)}
Thus, F(X) is represented as a set of ordered pairs :
{(oi, T;) 115 s} (5)

Pseudo~-Boolean function y(X) is represented similarly as above. Every term

Yi(X) in y(X) is associated with a pair of integers (ni, ai). where N, is determined

i
by eq(6).
- J-1
n, = Zjexi 2 (6)
where Ki is defined as :
K, = {31 3 e, ay = 1} (7

And then, y(X) is represented as a set of ordered pairs :
{n, e)) 1514 <ml (8)
3. ALGORITHMS
3.1 ALGORITHM FOR PSENNN-ROOLFAM FUMCTION
The internal representation of y(X) is implemented by using a hash table.

n; of eq(6) is used as the key for hash address.

HEAD LINK 1 a/
The hash function is defined as : | C » a)
2 74 a,
h(n,) = mod(n,, p) + 1 (9) - :
i i a3 f ";5 aj
In what follows, p denotes & prime number. The terms 4 T 7 ay
having same hash address are linked in & linear list .
as shown in Fig. 1. Algorithm H used to simplify F
pseudo-Boolean function is described below. Fig.l Data structure used

in Algorithm E

156

ALGORITHM H ‘

COMMENT : Two arrays HEAD [1l:pJand LINK [1:m] are used in the algorithm.

INPUT : y(X) of eq(2); OUTPNT : y'(X) =£,; af YI(X).

STEP 1: [Initialize] Set i =1, r = 0 and HEAD(jJ) =0 for y =1, 2, ..., D.

STEP 2: [Compute hash address] Set J = h(ni) and k = HEAD(j).

STEP 3: [Check if similar term exists] If k = O, then go to STEP L.

Elge, if n; = nﬁ then set ai = ai + 8y and go to STEP 5.
Otherwise, set k = LINK(k) and go to STEP 3.
STEP 4: [Store term] Set r = r + 1, no=n, a8l =a, LINK(r) = HEAD(j) and
HEAD(J) = r.
STEP 5: [Check for termination] Set i = i + 1. If i > m then HALT.
Else, go to STEP 2.

3.2 ALRORITHM FOR ROOLEAM FUMCTINN

The simplification of Boolean function is successfully performed by an algorithm
similar to Algorithm H above. In this case, o, of eq(3) is used as the key for hash
address. The following property is important to determine if a term consists of only
one variable or not -- because the internal representation o, of Fi(X) is equal to
2"1-l for some J, where 1 < J < n.

PROPERTY 1 : Let p be a prime number having 2 as its primitive root. Then the
following relation holds : o1 # 2J mod pfor 1 <i<J <p (10)

It is obvious from this property that two terms which consist of distinet
single variables will have distinct hash addresses.

4. TIME COMPLEXITY OF ALRORITHM H

In this section, we evaluate the computational time complexity of Algorithm H
only for pseudo-Boolean functions, because the time complexity for Boolean functions
is of the same order. In the discussion below, the following assumption is made.

ASSUMPTION 1 : The expected length of all linked lists are equal at any stage
of Algorithm H.

If Assumption 1 holds, Algorithm H would take maximum computation time to simpli-
fy y(X) which has already been simplified. The maximum computetion time of Algorithm
H is given by : T = a(m-1)(m-2)/(2p) + bm + cp + d (11)
Where a, b, ¢ and d are constants independent of m. The partial derivative of T with

respect to p is given by the following equation :

157

3T / 3¥p = -a(m-1)(m~2) / (2p) + ¢ (12)

Let p* be the value of p which minimizes T. p* is obtained by solving 3T / 3p = O.

p* = v a(m-1)(m=2)/(2¢) (13)
Assuming m >> 1, and letting A = v a 2¢ , we have : p¥ = Jm (14)

The minimum value T* of T is obtained by substituting p* to p in eq(15). That
is,

™ =,/ 2ac + bm+ d (15)
Then, we have T* = 0(m).

5. EXPERIMENTS

5.1 EXPERIMENT 1 (Computational time complexity)

The computation time needed to simplify y(X) by Algorithm H and by a convention-

al algorithm (denoted by "Algorithm A") are measured. y(X)'s are generated from a

series of uniform random numbers such T
Loo
that y(X) is already simplified. o
£
The average computation time of pe 3001
=3 m="500
Algorithm H, for 20 different y(X)'s for ;% 200
]
+
i . 2. 3 m = 200
each value of m, is shown in Fig g-lOO _P,_fﬂ_‘—@ﬂ
From this figure, we can determine the S oroo————
0 —+ ' '
coefficient in eq(1l4). A comparison of 200 400 600 8CC 1000 1200 p

size of hash table

3 *
the computation time of Algorithm H*, Fig.2 Corputation tirme for v(¥) by A e.v

m

which is Algorithm H using p*, with that Symbel .'s denote the uinimum of
of Algorithm A is shown in Fig. 3. From this

figure the following observation can be made : the 3
computational time complexity of Algorithm H* is

2
0(m); whereas that of Algorithm A, is 0(m").

5.2 EXPERIMENT II (Application of Algorithm H*) o ’
ol
We implemented two pseudo-Boolean programming 2 Iy
o
systems, Sys. H and Sys. A, which utilize % |
L r
Algorithm H* and Algorithm A, respectively, to é. ;
]
simplify y(X) and F(X). Then, the computation time @iy
%
ithm B
needed to solve pseudo-Boolean programming problems a 4_..:,:5_'-92'—’1—\3——-—'—,'
100 200 300 40 500 m
were measured, where the problems used were gene- number of terms in y(X)
Fig.3 Comparison cf ccmoutation
rated from uniform random numbers. time for y(X) by Algorithm E*

ard Algorithm A

158

e aas - i3 PRI PR : s = i
we derine 1, the 1ndex OI lmprovement o1 Sys. [
!

H over Sys. A, as follows: 60 o _-°
= - o o A‘\‘~\ i”;’ 3—“"
I=(Ty-Ty) /T, x 100 (%) (16) % 50 ~~fe T
o
where T, and T, denote the computation time of Sys. gLl /;
v /
+ /
A and Sys. H, respectively. The average improvement g " [526 -2
J0 Vi -
@ S O>GT T s=
index for nine cases of 20 problems each is shown in 3 e
8o -1
2 L’
Fig. b. Tt is obvious from this figure that 5 /
10 !/ §=6)
Algorithm H* does work successfully in the pseudo- d 420
c . \
Boolean programming system. The relatively low 2 60 10 n
number of terms in y(X)
improvement index of total system observed in some —— : Total system
--- : Formula manipulational
cases is due to low fraction of formula manipulation part

Tig.4 Improvement index

time against total computation time.
6. REMARKS
The basic idea used in Algorithm H* is also applicable to the simplification of
formula in polynomial form consisting of many terms.
COMPUTER USED : FACOM 230-38 FORTRAN IV S
ACKNOWLEDGEMEMT : The authors would like to thank Prof. Namio HONDA of Nagoya
University for valuable advice, and also the members of our laboratory for providing
helpful discussion.
REFERENCES :
(1) D.E.Knuth : The Art of Computer Programming, Vol. 3, Chap. 6, Addison-Wesley
(1973)
(2) Y.Yoshida et.al. : Algorithms of Pseudo-Boolean Programming Based on the Branch
and Bound Method, Jour. Inst. Electronics Comm. Engrs,

of Japan, Vol. 50, No. 10, pp 1995-2002 (1967)

