Information Processing in Japan Vol. 17,1977

Program Stacking Technique

Michiharu TSUKAMOTO*

Abstract

A technique named 'program stacking' is introduced and its applications are
described. The technique pushes programs into parallel stacks, transfers control to
them, and pops them up when completed their execution. The concept of program stack-
ing extends 'execute instruction' to a program. Programs are protected and executed
in parallel stacks. Therefore, this technique enables even a program with program
modification to be reentrant or recursive.

1. Introduction

Present day computers adopt what is called the stored program method, in which
procedures and data take the same form of representation and storage. In the early
days of the computer, however due to the small amount of available main storage,
programs consisting of procedures and data were treated as one and could be modified
by themselves. This technique called 'program modification,' was abandoned soon
after, for to the following reasons:

(1) In a multiprocessing or on-line real time processing environment programs must
have reentrancy. For this purpose, such processes as disabling and the enabling
interrupts and saving and resumption of the modified information are required.

(2) Recursiveness required in high-level language processors is hard to implement.

(3) Programs are prone to bugs.

(4) Debugging is difficult due to dynamic modification of the program.

It is therefore said to be a "bad programming technique"[5].

However, for those programs which treat the programs in object code as data, such
as trap handlers, simulators and tracers, the method of program modification is still
an useful technique. The technique has no recursiveness and reentrancy in itself, but
in most cases of its use reentrancy is particularly required.

In this article, assuming a hardware stack feature, we propose and generalize a

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 18, No. 3 (1977), pp. 237~244.

* Information and Control Section, Control Division, Electrotechnical Laboratory

114



115
technique called 'program stacking' which puts the modified portions of a program or
the portions to be modified onto a stack and executes them.

This technique is an extension of the instruction to a program in a form which
permits interruption, or the extension of the use of a stack or dynamic store to a
program. As related method, we have the mixed code approach[l,2] which uses this
technique as part of the program.

2. Program modification

Program modification is required when the procedure and its data are not
separated regionally as well as functionally. In this case, the program-modified
portions must not be repeatedly modified again until they become unnecessary. Program
modification causes the loss of reentrancy and recursiveness. In order to keep them,
disabling and enabling of reentry, and the saving and resumption of the modified
portion are necessary. However, the former blocks the other processes and even the
latter becomes difficult if there are many portions to be modified or a portion to be
modified varies in size.

3. Principle of program stacking

We have devised a method of scheduling, similar to multi-level interruption in
which each process is assigned a priority and processing takes place in order of
priority, the process which has no preassigned priority being used. In section 3.2
we discuss the former and in section 3.3 the more general cases of the latter.

3.1 Stack

The stack feature is implemented on a computer as follows[3]:

(1) The stack is composed of a stack area(SA) to store information and a stack
pointer word(SPW) to control it.

(2) SA is a contiguous area in the main store and occupies from low to high
addresses.

(3) SPW is composed of the following elements:

Stack pointer(SP), space counter(SC), and work counter(WC).

During stack operation, if another process interrupts it and uses the same
stack, inconsistency will result in the relation between SP and its object infor-
mation or in the relation between SC and WC. So, the operations must be the hardware
instructions.

If the stack is implemented as above, it has the following four properties:

Property 1 Storage of information.



Dwarnantwy 2 Pratantian Aaf +ha stnrad informetion from damace
Property 2 Protection of the stored information from damage.
Property 3 Information in the stack may be refered directly using SP and the index

register, without push and pop.
Property b SA is ordinary storage, so that we may load object programs in the
stack and execute in it.
The feature to push object programs in the stack and execute them is called
'program stacking.'
3.2 Basic program stacking
A portion cut out of a program with an entry at the top and an exit at the bottom
is called a basic hunk®. Program stacking of a basic hunk is called the basic
program stacking.
Algorithm 1 Basic program stacking
(1) Place the program which is executable in the stack area at the moment onto the
stack and form a basic hunk in the stack.
(2) Put into the stack the instruction to return to the original sequence.
(3) Load in the index register, X, the complement of the number one less than the
number of words stacked in the process of (1) and (2).
(4) Using the following instruction, transfer control to the top of the basic hunk
formed in (1):
B *SP,X ;3 branch to (SP)+(X)
(5) Execute the basic hunk, and return to the original sequence when executing the
instruction created in (2).
(6) Pop up the codes of (1) and (2).
If a part of a program can at any time be reentered, the program is called
always reentrant in that part. We have the following:
Theorem 1 If processes are processed in order of priority, the technique of basic
program stacking is always reentrant.
The theorem guarantees that the program modification and its execution are always
reentrant if the control is the nesting.
3.3 Extension to general processes

Since the control structure handled by a stack is restricted to the LIFO

* Dawson calls by basic hunk the program unit which has one entry and exit at the
last or whose last instruction is jump, call or return[2]. We restrict ourselves

to the first type of Dawson's here.



117
structure, it is impossible to implement program stacking for many processes on a
single stack. It is solved by providing a program stacking stack for each process.
The parallel stacks are implemented as follows:
(1) 1Include SPW in the process control block.
(2) Arrange the stack area by a dynamic storage mechanism without relocation.

Now we have the following:

Theorem 2 In the processing of general processes, the technigue o
stacking is always reentrant.

The theorem is an extention of the use of dynamic storage to a program.
Hereafter, a stack means one of the parallel stacks implemented by the dynamic storage
mechanism.

4. Extension of program stacking

Since a program contains various types of branching instructions such as BRANCH,
CALL and RETURN, it is often difficult to extract a portion of a program as a basic
hunk. In this chapter, we extend the concept of program stacking to general programs.

4.1 Control structure of a program required in program stacking

In program stacking, transfer of control between modules and the management of
the related stacks must be done correctly. In regard to the transfer of control
between modules, the control structure is classified into the four types:

(1) Stagnant type (2) Call type (3) Return type (4) Jump-out type
In type (4) the control, exiting from the executing module, never returns to the same
module agein, and a program is remained in the stack. In order to apply program
stacking, the program must be enclosed in a call and the corresponding return, such as
subroutine.

4.2 Method of program construction

Programs of closed structure as described in the previous section are generally
large and their program stacking requires much time to push and pop. Moreover, it
requires large capacity. However, if we ensure that no jump-out occured in the stack,
then the parts without program modification can be executed outside the stack, and the
above inconvenience could be avoided by appropriate partitioning and reconstruction of
the program. An aggregate of program portion every of which has a branching in-
struction at the bottom is called an extended hunk. In the following we describe a
method to reconstruct a program and form extended hunks, in order to effectively apply

program stacking. We assume, however, that the entry is at the top of program and



118

o
3
oN
D

s

[

pR?

nan at
w 19

11se lagat+ on
¢an usc atv 188587 O

[¢]

Algorithm 2 Method of program construction (Fig. 1)
(1) Construct a program PrO without regard to program stacking (Fig. l-a).

(2) Divide the program Pr into program-modified parts and not program-modified

(o]
parts. In this partitioning we do not split the portions which are logically

indivisible, such as macro instruction consisting of several words and the portions
which save the status of the computer. We denote the partitioned program by

hunk™ (Fig. 1-b).
i=1,2,..

(3) Add = label(L) to the top of each partition(hunki), and a branch instruction(B

" . "
Lt l) to its end. The program now takes the form i, hunk”; B L* l(Fig. l-c).
i=1,2,...

(4) Concatinate the partitions that are program-modified on the one hand and those
not program-modified on the other, and get the two extended hunks Prl and Pr2’

respectively(Fig. 1-d):

P,= L hunk'; B L1*t P,= L':hunk'; B it
1=1,3,5,.. i=2,4,6,..

vhere P is the extended hunk to be program-modified and P the extended hunk not
to be program-modified. If otherwise, we put (B L!) in the top of P_, and newly

denote this by Prl and the previous Prl by Pr2'

(5) Rewrite the instructions which refer P, to the instructions refering it by the

relative address from its top. Here we assume that Pr is the extended hunk to be

1
placed on the stack and Pr2 program ded hunk ded hunk
Px0 Prl Pr2
the extended hunk to be
. ! ! L2
remained off the stack. 1 1 1 2
. hunk hunk’ hunk hunk'
It is clear that the : B L2 B L 5 L]
: hunk? 12 ] e (] ity
P, is the smallest extended ----:- hunk? mﬁmi hunk?
. unk rerEl rex ]
hunk in program stacking. _2___, L3|8 1 let---. leL-i;-
6
The two extended hunks thus hunk® hunk® hunk® hunk
1 B o
constructed call each other . L4 L? L&F=-=1
in the unit of partition. E ; E
This has the same control (a) (b) (c) (a)
structure as a 'coroutine.' Fig.l Construction of two extended hunks

(a) Original program

{b) Partition

{c) Add labels and branch instructions
(d) Construct two extended hunks



119

4.3 Extended program stacking

As described in the previous section, instructions which refer a stacked hunk
must refer it by the relative address from its top. Extended hunks are dynamically
allocated in the stack area. It is necessary to have something like a base register
to avoid address modification at stacking time. We therefore extend the stack as
follows:

Definition Extended stack
A stack with the addition of the following element to the stack pointer word(3.1).
Hunk pointer(HP): Points to the top of the last extended hunk in the stack.

Using this, program stacking is extended as follows:

Algorithm 3 Extended program stacking
It is assumed that the extended hunks to be program-modified are constructed
according to Algorithm 2.
I. Preprocessing

(1) Push return address in the stack.

(2) save HP in the stack.

(3) Update HP (i.e., HP:=SP+1).

(4) Push the extended hunk in the stack.

II. Execution

(5) Transfer control to the extended hunk in the stack by the following instruction:

B *HP ; branch to (HP)

III. Postprocessing

(6) Pop the stack until SP=HP.

(7) Restore HP from the stack.

(8) Fetch the return address and transfer control to the caller.

This is always reenterant, too. I and II may be considered the extension of
subroutine call and III that of return.

If we notice that the extended program stacking dynamically loads the extended
hunks to the stack, links and automatically releases the area, this may be considered
a type of dynamic overlay.

5. Conclusion

For the hardware stack feature we have described a technique named program

stacking which executes a program in parallel stacks. We have also discussed the

method of reconstructing a program in order to assure effective application of the



(1) The function of execute instruction is extended to multiple instructions, that is
to programs.

(2) Use of a stack of dynamic store is extended from the one for data to the one for
programs.

A stack or dynamic store, for example subroutine-link-stack, is usually used for
the storage and protection of data. In the present technique, object codes are first
loaded, protected in it as data and are executed afterward by jumping into it, so
procedures and data are completely protected from outside.

When the size of hunk is small like the interface of existing subroutines and
monitors, basic program stacking can be applied directly, and we can modify the
virtual interface without modifying the interface of the existing subroutines and
monitors. Since the technique renders a program reentrant and recursive, it has been
effectively utilized in the implementation of drivers of monitor call in LISP
processor[4]. Manual coding of extended hunks is too complicated and is likely to
produce a lot of bugs. This may be solved by mechanical processing to Algorithm 2.

The author wishes to express his deep gratitude to Mr. Koichi Furukawa,

Dr. Tadashi Nagata and Dr. Hirochika Inoue for their valuable advice and guidance, as
well as to the members of Robot Research Group, Control Division, for their

interesting discussions.

References

1) R.J. Daking et al.: A Mixed Code Approach, Comput. J., vol. 16, No. 3,
pp. 219-222 (1973)

2) J.L. Dawson: Combining interpretive code with machine code, Comput. J.,
vol. 16, No.3, pp. 216-219 (1973)

3) Mitsubishi Electric Corp.: MELCOM 7700 system reference manual (1973)

4) M. Tsukamoto: On Foreground LISP Interpreter, Proceedings of IPSJ, vol. 15,
pp. 653-654 (1974)

5) P. Wegner: Programming Language, Information Structures, and Machine

Organization, McGraw-Hill, New York (1968)



