Information Processing in Japan Vol. 17,1977

A Study of Error Correction and Recovery

pl\‘.
iUl
Kenji KAIJIRI*, Seiichi UCHINAME* and Yoshikazu TEZUKA**

Abstract

We have proposed the practical error correcting and recovering algorithms for the
SLR(k) parsers. First, we define the i-order valid pair for a LR(0) table T and a k-
terminal string w. Let (To...Tn,aj...am) be an error configuration. If (T, ,ap...8p.)
is the i-order valid pair for some BeIl, we correct the above configuration to (Tg...
.TnsBap...ap). If we extend B in the definition above to Be(NVz)1, then we can make
error recovery in the same way. Most useful is the case i=0 or 1. In these cases, the
i-order valid pairs can be stored in the SLR(k) parsing table. The SLR(k) parser with
these algorithms can parse and correct an input with length n within O(n) time.

We have shown by simulation that the algorithm corrects60-80% of the programs with

errors.

1. Introduction

One of the important functions of parsers is error processing (error correction
and recovery). Some theoretical researches about least error correction have been
done, but these algorithms reqiure 0(n3) time or require backtracking; so they are
not adequate for practical use. Considering from the users’ side, the minimum cor-
rected program is not necessarily the program that users intended to make. We con-
gider error processing from a practical point of view, so we suppose the task of
error processing is the following:
(1) To correct the parser defined error and reduce the cost of debugging.
(2) To make the eliminated portion by recovery short and detect as many errors as

possible.

In this paper, we consider error processing for parser defined errors without
backtracking and propose the error correcting and recovering algorithms for SLR(k)

parsers. They have the following characterisics:

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 18, No.3 (1977), pp. 230~236.

* Faculty of Engineering, Shinsyu University
** Faculty of Engineering, Osaka University

109

110

(1) Error correction and recovery are invoked by procedure call when an error is
detected; so the parsing of legal programs is not affected.
(2) They correct and recover within O(n) time.

(3) Elimination part of program by error recoveryis smaller than that of ordinarily

used methods.

2. Fundamental Concepts

In this section, we define the valid error correction and recovery. The notation
of SLR(k) parsers are the same as in [2]. The next two definitions are essential.
[definition 1] Valid Table Sequence

We say that the sequence of LR(0) tables, Ty...T., is a valid table sequence if

n?
there exists a terminal string w; such that [To,wlwz$k]Pt[To...Tn,WZSk], where Ty 1is
an initial LR(0) table.//
[definition 2] Valid Sequence

We say that the sequence of LR(0) tables followed by a terminal string, To...T ay
...ap, is a valid sequence if the following two conditions hold:
(1) Ty...Ty is a valid table sequence.
(2) [To...Tn,ai...amwsk]Ft[ToT;...Tﬁ,amw$k] F(not error).//
[definition 3] Valid Error Correction

The transformation from an error configuration [To...Tn,ai...am] to a nonerror
configuration [Tg...Tp,08k...85] is a valid error correction if igk<m, act®* and
To...Tpoax is a valid sequence.//
This correction is a local error correction because a;...aj_; is not changed.

3. Error Correction by Valid Pairs
[definition 4] i-order valid pairs

We say that (T,a) is an i-order valid pair for a parser Il if there exist o and ¥

holding the following condition: for any Ser*, [To,aYaG]E%[To...Tn,YaG]H%[ToT{...Tp,
aG]}ﬁ(not error), where T,=T, aeV{s$}, o,yeI*, and |Y|-i.//

If (T,a) is an i-order valid pair for some YEZ*, then there exists a valid table
sequence Tq...T,(T,=T) such that Ty...T,ya is a valid sequence, that is, i-order
validness guarantees that Y can be inserted between T and a. Fig.l is the error
correcting algorithm using i-order valid pairs.

Even if(Tn,a) is an i-order valid pair for vy, Typ...TpYa is a valid sequence only

for the particular valid table sequence Tp...Tp-1. It 18 necessary to check whether

111

Y is valid for the current table sequence. TVS does this check and is the most time

consuming. We describe in detail TVP (Fig.2) and TVS (Fig.3) for the case of i=0 or

1 (in-l). For the case of i >1, the algorithms are almost the same as these.

Procedure TVS is dependent on the current table sequence, and is very time con-

suming. We define strictly restricted valid pairs in order to give more efficient

algorithm.

[definition 5] i-order strictly valid pair

We say that (T,a) is an i-order strictly valid pair for a parser Il i1f there exists

at least one terminal string o of length i which satisfies the following conditionms;

(1) (T,a) is an i-order valid pair for a.

Procedure ERROR CORRECTION
Begin comment input [To...Tp,aj...apl
output [To...Tn,Yap...ami;
For k=j to j+l1 do
For 1=0 to i, do

1f (Tp,ax) is an i-order valid pair..I
Then If there exists Y such that Ty..
.TnYak 1s a valid sequence...II

Then Goto SUCCEED;
error correction fails and "No";
SUCCEED:correct to [Tp...Tp,Yay...ay]
End comment procedure I is TVP(T,a,i)
procedure II is TVS(TS,a,i,Y) and
TS 1is To...Tn;

Fig.l Error correction using i-order
valid pairs

Procedure TVS(TS,a,i,Y) comment if there
exists Y such that To...Tpya (Tp...Tp=

TS) is a valid pair and IYI-i then TRUE
else FALSE;
Begin T=top of TS;
s={beZ|(T,b) is O-order valid pair};
TVS=FALSE;
If S#empty Then
For all b in S do Begin y=b;
SMT(TS,b,T1);
If £(T1,b)#error Then Begin
T2=g(T1,b);
If £(T2,a)#error Then TVS=TRUE
End
End
End comment SMT(TS,b,Tl) computes the
following Tp=Tl, [Tg...Tp,ba]&([Te
T{...Té,ba] (shift or error);

Fig.3 Procedure TVS

Procedure TVP(T,a,i) comment if (T,a) is

an i-order valid pair then TRUE else
FALSE;
Begin set S initial empty;
Case 1 of
0:1If £(T,a)ferror Then TVP=TRUE Else
TVP=FALSE;
1:Begin L1=FALSE;
For all b in I do Begin
S=NEXT*(T,b);
1f S¥empty Then Begin L2=FALSE;
For all Tl in S do Begin
T2=g(T1,b);
If £(T2,a)#error Then L2=TRUE
End
If L2 Then L1=TRUE
End
End;
If L1 Then TVP=TRUE Else TVP=False
End
End comment this procedure is a test
whether (T,a) is an i-order valid
pair for some b. f is an action and
g is a goto function;

Procedure NEXT*(T,b)
Begin set S initial empty;
Case i of
shift:S={T};
error:S=S;
reduce:Begin U=NEXT(T,b);
For all Tl in U except T do
Case f(Tl,b) of
error:S=S;
shift:S=s {T1};
reduce:S=S NEXT*(Tl,b);
End;
NEXT#*=§
End comment NEXT(T,b)={T1|there exists
T2 such that f(T,b)=reduce i, P;:A

+a, g(T2,a)=T, and g(T2,A)=Tl};

Fig.2 Procedure TVP

112

(2) For any Ty...T,_; such that Ty...T, is a valid table sequence (T=T,), [To...Tp-1
T,aaB]F%[ToTi...T;,aB]hﬁ(not error).
If (T,a) 18 an i-order strictly valid pair for a, then To...T0a (Tn-T) 1s a valid
sequence whenever To---Tn is a valid table sequence, If we use this pair, we may look
only at the topmost table (T,). The error correcting algorithm by i-order strictly
valid pairs is in Fig.4. Whether (T,a) is an i-order valid pair is determined in
advance only by (T,a,i), so the test in III (Fig.4) is done by table look up. Proce-
dure TSVP (Fig.5) tests i-order validness for i=0 or 1. This information can be
stored in f-function of SLR(k) parsing table.
Example. Error correction in a SLR(1) parser
Consider the SLR(1) grammar G as follows: G=<{E,T,F},{a,+,*,(,)},P,E>
P: 1) E » E+T 2) E+T 3) T + T*F 4) T+ F 5) F + (E) 6) F+ a
We show the SLR(1) parsing table with

Procedure ERROR CORRECTION
error correcting entries in Fig.6. In Begin For k=j to j+1 do

For 1i=0 to in do

Fig.6, If (T,,a,) is an i-order strictly
n*“k
M[1,B]=j means f(Ty,B)=shift and valid pair for some a.........III
Then Goto SUCCEED;
S(Ti,B)'Tj error correction fails and "No";
SUCCEED: correct to [To...Tn,aak...am]
M[1,B]=R¢ means f(Ty,B)=reduce k End comment procedure III is

TSVP(T,a,i,a);
M[1,B]=A means f(Ty,B)=accept

Fig.4 Error correction using i-order
M[i,B)=a means (Ti,B) is an i-order strictly valid pairs
valid pair for a.//
Procedure TSVP(T,a,i,a) comment if (T,a)

Y in definition 4 can be extended is an i-order valid pair for some a
then TRUE else FALSE;
to the element in (I“N)i easily. In Begin set S initial empty;
Case i of
this case, the former algorithm can 0:If f(T,a)ferror Then TSVP=TRUE
Else TSVP=FALSE;
be used as an error recovery algo- 1:Begin L1=FALSE;
For all b in I do
rithm with some modifications. Begin S=NEXT*(T,b);
If Sféempty Then Begin L2=FALSE;
5.Evaluation and Conclusion For all T1 in S do Begin
T2=g(T1,b);
We have evaluated these algorithms If £f(T2,a)=error Then L2=FALSE
End;
by simulation. We have chosen three 1f £2 Then Begin L1=TRUE; a=b
End
factors for this evaluation: 1)pro- End
End;
grams’ length, 2)the number of errors 1f il Then TSVP=TRUE Else TSVP=FALSE
End
(this is determined randomly and End

three kinds of upper bounds are Fig.5 Procedure TSVP

113

E T F a + * () § <Program> +<Block>

0 4 a a 5 a a <Block> *<Blockhead><Blockbody>END

1 + 6 + A | <Blockhead> +BEGIN|<Blockhead><Decl.>;

2 * R2 7 * R2 R2| <Decl.> +TYPE 1d|<Decl.>,id

3 + R4 R4 * R4 R4| <Blockbody> +<Statement>,<Blockbody>;<Statement>
4 + R6 R6 * R6 R6| <Statement> -<Simplestate.>|<Ifstate.>

5| 8 2 4 a a 5 a a| <Simplestate.>*+id=<Exp.>|<Block>

6 4 a 5 a | <Ifstate.> ~IF<Exp.>THEN<Statement>|IF<Exp.>
7 10 | 4 a a 5 a a THEN<Simplestate.>ELSE<Statement>
8 +) + 11) | <Exp.> +<Term> | <Term>+<Exp.>

9 * R17 * Rl Rl| <Term> +1d| (<Exp.>)
10 + R3 R3 * R3R3

1 + RSR5 * R5 RS Fig.7 Test grammar

Fig.6 SLR(1)parsing table for G

chosen), 3)an error probability for each terminal symbol. We made a program which
produces an illegal program according to the above three factors. The test grammar is
shown in Fig.7 and the results in table.l. Each value is the number of corrected pro-
grams for 100 illegal programs. The error boundary 1/20 is the most practical case.
In this case, the correcting ratios are 80-90% and decrease of these ratios accom-
panying with increase of the programs’ length is small compared with other cases. The
remainder which can not be corrected by this algorithm can be recovered by the above
mentioned recovering algorithm.

We have shown the error correcting and recovering algorithms for SLR(k) parsers.

They reqiure no extra memory and parse an 1llegal program with length n within O(n)

time.
Table 1 Simulation results of error correction
A I II III
B 111 111 1 1 1] A..error probabilities
C 5 10 20 5 10 20 5 10 20
B..error bound
1(length=33)) 56 82 86 | 65 77 90 | 67 79 89
2(length=47) || 59 80 85 | 53 75 83 | 56 77 83| C--1imput program
3(length=58) | 57 69 82 | 53 77 80 | 55 75 85
4(length=75) || 41 65 80 | 52 65 78 | 46 62 81
REFERENCES

1) A.V.Aho & T.G.Peterson: A Minimum Distance Error Correcting Parsing for Context-

Free Languages, SIAM J. Computer, Vol.l, No.4, pp.305-312 (1972)

2) A.V.Aho & J.D.Ullman: The theory of Parsing, Translation, and Compiling,

Prentice hall

