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Abstract
A method is described for smoothing two-dimensional data by the least squares
fitting with a piecewise bicubic polynomial of class Cl. The number of knots and
their positions are determined automatically. A condition for good positions of knots
is introduced. The number of knots is determined by the use of Akaike’s information

criterion (AIC).

1. Introduction

Two-dimensional data are treated in many fields. In general, measured data have
errors and must be smoothed frequently. One of the methods for smoothing two-
dimensional data is to fit an approximating function having two variables to the data
by the method of least squares. This method is useful for smoothing or compressing
data, for integrating or differentiating the underlying function of data and for
drawing contours from data. )

Some methods which use a single polynomial having two variables have been developed.
However, these methods do not give a good approximation in cases where the underlying
function of data has a disassociated nature. In these cases, piecewise polynomials
are very useful. Hayes and Halliday [2] describe a method using bicubic spline
functions. However, automatic determination of knots is not considered. This problem
is very important, because goodness of fit with a spline (or a piecewise) function is
considerably affected by the number of knots and their positioms.

In this paper, we describe an automatic method for smoothing two-dimensional data
) with a piecewise bicubic polynomial which is continuous with its first derivative.

The positions of knots are determined by the use of the second partial derivatives of
the underlying function of data and the number of knots are determined by using
Akaike’s information criterion (AIC) [1l]. Further details are given in the Japanese

version of this paper (see footnote).

2. Representation of an Approximating Function
We assume that data are given on the mesh points in a rectangular domain R =

[a, blx[c, d] on the (x, y) plane and expressed by the equation

F, = f(xt, yu) +e , (t=1,2,...,K; u=1,2,...,L). (1)

tu tu

Here f(x, y) denotes the underlying function of data and e u’s are mutually

t
independent errors which follow the normal distribution with the mean zero and the

unknown variance 02 (< »). 1In this paper, f(x, y) 1is called the "signal", (xt, yu)
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a sample point and Ftu a data value.
y
The domain R 1is subdivided into $ Vapes Vo Sl [ f_-- —
rectangular panels R (m=0,1,...,h; i EE%;'-.'- Ry
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where Mi(x) and Nj(y) are normalized
Fig. 1 The area of fitting, divided

cubic B-splines, and yij’s are parameters
by breakpoints Em’ cn into

which are determined by the method of least

panels R . Here A and
™

squares [2]. The spline function (2) would, i

in general, have second derivative uj denote knots.
continuity: to allow discontinuities in

second derivative, we must have two knots coinciding at each breakpoint of the
piecewise bicubic polynomial. ZLet the knots for Mi(x) (1 =1,2,...,2h+4) be A =
(A_3, A-Z’ ooy A2h+4)' and let the knots for Nj(y) (3 =1,2,...,2k+4) be yu =
(u_s, H_gs sees u2k+4). In addition, let the breakpoints for x direction be & =
(Eo, El, ey £h+1) and let the breakpoints for y direction be [ = (;0, Cl’ ey

where EO = a, b, CO = ¢ and ck+1 =4,

S fher T
3. Good Positions of Knots
We first consider the choice of knot positions when the number of knots is given.
A plecewise bicubic polynomial which is continuous with its first partial derivatives
has the distinctive feature that its second partial derivatives are piecewise linear
polynomials which are discontinuous at the breakpoints. Using this property, we
determine good positions of knots automatically. If the second partial derivatives
of the signal are sufficiently close to those of the approximating function, we can
obtain a good approximation. 1let us consider this point.
Consider how to determine the knots A to obtain a good approximation. If y = Yy

then data Fu = (F ceey FKu) can be regarded as the data having one variable

1lu’ F2u’

x. If we write as Hm = [Em, §m+1] (m = 0,1,...,h), then the square Gu of the L2

norm of {f(xt, yu) - S(xt, yu)} for y = Yo and a < x, < b can be expressed as

follows:
h 2
G, = 20 . EH {E(x, y) - S(x y )1 3)
=Y X
THEOREM.
Suppose that (g, y ) = S(&, y), 3f(x, Yu)/axlx'gm = 35(x, yu)/axlx-im and
azf(x, y.) st(x. y.)
u u
2 - ) $ O )

ax Ix
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hold in each interval {Hml m = 0,1,...,h}. Then
b 2 4
(e ) L (xt -£). (5)
™

x €l
t m

If the breakpoints & (hence the knots A) are determined so that the right-hand
side of (5) can be minimum, we may expect S(x,yu) to be a good approximating
function to f(x, yu) from the theorem. However, the breakpoints & (hence the knots
A ) minimizing (5) are functioms of Yy (u=1,2,...,L). As is obvious from the
descriptions in section 2, the knots A must be independent of y. Therefore, we
determine the positions of knots A as follows.

First of all, we estimate the values of the second partial derivative

Bzf(x, yu)/alex_x (t = 1,2,....,K) from the data Fu. Let these values be denoted
t
by g, = (glu’ Byy? vt gKu)' Secondly, we make an approximation to L with

a piecewise linear polynomial Bu(x) which is discontinuous at its breakpoints. Let
the breakpoints of B (x) be ¢  (m=0,1,...,h+l), where Y, =a and Yhel,u = O

In the intervals D

o - [wmu’ wm+l,u) (m = 0,1,...,h), suppose that

max ]gtu - Bu(xt)l =8 (6)

x, €D
t mu

At this time, we make the approximation so that the values of

h 2 4 h
Vo L) Ik -y ) = T )
m=0 x EDmu m=0

can be almost minimum on the basis of the theorem. This approximation is computed
easily, and the approximating segments can be increased one by one with an automatic
manner [3].

Third, we determine the breakpoint £ (hence the knots A and ), ) of the

m 2m~1 2m
approximating function (2) using the weighted least squares approximation to wmu
(u=1,2,...,L) as follows. Suppose m =1
Yy
R

(see Fig. 2). The weight w for wlu is d L}L i

1u
determined to be the larger value between

AOu and Alu; that is, L'.

Vig T max (AOu’ Alu)’

(u=1,2,...,L). €]
Y2
Then the breakpoint El is taken at the value c Ffl
which minimizes the weighted sum 1 1 1
L 2 a ii b x
e T AU S S "
u=1
of the squares of the residuals (51 - wlu)’ Fig. 2 Determination of the break-
u=1,2,...,L. Therefore point 61. The dots in the
L L figure denote the breakpoints
E, = A, = A, = Lw V. [/ Zw . (10) _
1 1 2 u=1 lu'lu u=l 1u wlu (u=1,2,...,L).
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The breakpoints Em (hence A and AZm ) for m=2,3,...,h are determined

2m-1

The knots u are determined by the same procedure.

4. Least Squares Fitting With a Piecewise Bicubic Polynomial

Equation (2) is fitted to the data (1) with the method of least squares. We get
an approximating function for the various pairs of h and k wusing the positions of
knots obtained by the method in section 3, and decide the adequate number of knots by
use of AIC [1].

Let us consider the following regression model from (2):

(t=1,2,...,K; u=1,2,...,L).

G

F, = S(xt, yu) + e (11)

tu tu’

If AIC is applied to this model as a

criterion for fitting, then Estimate the partial Increase the
second derivatives: number of the
AIC = KL log_ Q + 2(2h+4) (2kH4),  (12) a2 x,y) | approximating
ax’ XX Ty segments one
where Q 1is the sum of the squares of Leey fore.

ayz I*'lt,y'y“ ’___-—J

t=1,2,...,K; Determine the
(u-lz,,_[,) knots A and u.
We continue the calculation of fitting 1 - .pi:m'“e

Number of the

bicubic polynomial|
approximating

to the data with

(2h+4) (2k+4)
of parameters of S(x, y) [3].

regsiduals and 18 the number

by increasing the number of knots and
choose the model which minimizes AIC. As

segments + 1
Lnd T the method of

.
the result of the calculation, a good Approximmte the estimated

least squares,

approximating function is given by the values of the partial

minimum AIC model.

second derivatives with
Has

minisum of
AIC been
determined

Output: the
result of fitting

Fig. 3 A flow chart for the two-

a plecewise linear

An outline of the algorithm of fitting polynomial which is

discontinuous at the

is shown in Fig. 3. AIC is not always a

breakpoints.

unimodal function of the parameter.

However, because of the fact that the best Number of

approximating function is of the minimum the approximating

segments = 1
value of AIC, we can determine a satis-

factory approximating function (in other No

words, good knots) automatically.
dimensional data fitting with a

5. Numerical Example

We use the following data plecewise bicubic polynomial.

F = 1 + 1 + e

001 + 2(x, - 0.6)2  0.02 + 20y, - 0.2)2

tu’

(x,: 0.0, 0.02, ..., 1.0; y_: 0.0, 0.02, ..., 1.0), (13)

where e ’s
tu

are mutually independent errors which follow the normal distribution
with the mean zero and the variance 1.
[a, b]x[c, d] = [0, 1]x[O, 1].

Table 1 shows the computed values of AIC.

The domain of fitting is determined as

In the case of the proposed method, AIC
attains a minimum value at the point where the number of the parameters is equal

to 196. The contour lines drawn from the result of fitting in this case is shown in



Fig. 4.
intervals of the breakpoints & and g, the

In the case of the fitting with equal

values of AIC are larger than those of AIC of
the proposed method. Fig. 5 shows the contour
lines drawn from the result of fitting with
the equal intervals to the same number of the
parameters as Fig. 4. Fig. 6 shows the
contour lines drawn from the original data.
Fig. 7 shows the contour lines drawn from the

signal. Fig. 4 1s very similar to Fig. 7.
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Fig. 4 The contour lines drawn from
the result of fitting by use
of the proposed method.
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Fig. 6 The contour lines drawn from

the original data.
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Table 1 The calculated values of AIC

The number of
parameters proposed equal
(2h+4) (2k+4) method intervals
36 32,943 32,810
64 28,830 30,989
100 23,350 30,529
144 21,392 29,175
196 20,738 26,848
256 20,837 22,596
324 20,827 21,632
400 20,850 22,784
484 20,952 22,074
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Fig. 5 The contour lines drawn from

the result of fitting with equal

intervals of the breakpoints.
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Fig. 7 The contour lines drawn from

the signal.
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