Information Processing in Japan Vol. 17,1977

Seiichi NISHIHARA* and Hiroshi HAGIWARA**

Abstract

Performing set operations is one of the basic techniques in the fields of infor-
mation retrieval, data structure and data base management.

In this paper, it is shown that hashing techniques can effectively be applied to
performing set operations; where each set is a set of keys. Each entry of a hash
table contains a key field, a pointer field and a match level indicator field. The
last field is used to indicate how well the key satisfies the set formula under
consideration. Some algorithms to process set formulas containing no complementary

set are given and the efficiency is proved by some experiments.

1. Introduction

One of the purposes of recent data management is the centralized control of many
files, so that the redundancy and inconsistency in the stored data may be avoided.
Further, queries concerning more than one file can be accepted by unifying files.
Most of these operations basically contain set operations especially in information
retrieval systems. For instance, when two sets of records satisfy different conditioms,
the intersection of the two sets is the set of records satisfying both conditions.

In this paper, a method to perform set operations by using hashing techniques is
proposed. First, a method for set formulas in disjunctive normal form is described;
and then the method is extended to general set formulas. Simple experiments are also

executed to estimate the efficiency of the method.

2. Performing Set Operations
2.1 Definition of Terms

Before describing the method, we shall introduce the terms necessary for the
algorithms. The sets appearing in expression of set operations (shortly set formula)
are expressed as S or Si(i=1,2,--~). Each set is a finite set of keys. We assume that
the operation to get each key 1in a set one after another without repetition is
available. Let card(S) be the cardinality of set S. Intersection or union of two sets
S. and S, are written as S,°*S, or S,+S,, respectively, Further, elementary intersec-

i 3 i3 i)
tion or elementary union is defined as

L
A Si=SiSpeSe 0F U Si=SitSittSa
2 -

respectively. Then a set formula is called to be in disjunctive normal form if it is

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 18, No.1 (1977), pp. 11~18.

* Institute of Information Sciences, University of Tsukuba
** Department of Information Science, Kyoto University

87

88

a union of elementary intersections, i.e.

m (i) - o < . < .. <
U N Su=Su-Sus*Saw+-+SmeSaze s+ St
i=lj=1

. 1)

In the formula (1), the first set of each elementary intersection (i.e. S11,S21,"°°,
Smi1) 1s called a candidate set. Conversely, the last one (i.e. Sip(1)sS2n(2)5 " s
Smn(m)) is called a determinating set. The keys in the resulting set of a given set
formula are called the matched keys.

Up to now, several kinds of hash methods have been proposed[l], whose detailed
explanation is entirely omitted here. However, we claim that the hash method adopted
in our algorithms works correctly even if a given query key 1is not 1in the table.
Thus, a hash method such as the separate chaining method[1], the conflict flag method
[2] or the predictor method[3] is preferable.

Each entry of the hash table contains at least three fields, as is shown in Fig.l.
A key is hold in the key field. The match level field

(ML-field) is used to indicate how well the key in the [masch level | hey poioter_|
Fig.1 Structure of an entry.

key field agrees with the given set formula. The

pointer field (holding a pointer of the chaining method) is, of course, replaced by
the conflict flag or the predictor field in the case the chaining method is not
adopted. Now our problem is to get the matched keys of a given set formula by using
a hash table.

2.2 Method for Disjunctive Normal Form

In this section, we give a method to process set formulas in disjunctive normal
form. The method consists of two phases as follows.

Phase 1 (Preprocessing — assigning a match value to each set)

Assign serial numbers to all the sets in the set formula from left to right except
the determinating sets. The number assigned to each set is called the match value of
the set. Then assign to each determinating set, a same value called the final match
value, which is the least integer greater than any match value,

For example,

PR A S AP AR A
where the final match value is 7.
Phase 2 (Execution)

Before giving the algorithm of phase 2, we define some wordings used throughout
the paper.

First, "storing set S" means '"to store each element of set S into the hash table
while initializing the ML-field with the match value assigned to the set. But notice
that the entry whose ML-field is not equal to the final match value is treated as
empty." In this operation, i1f the key to be stored already exists in the table and
its ML-field is equal to the final match value, then there is no need to store the key
again.

Next, "filtering x-valued keys according to set S" means the following operation:
"For each element key of set S, if the key exists in the hash table and the ML-field
is greater than, or equal to, x and less than the match value(say y) of S, then update
the ML-field by y. Otherwise, leave it as it is."

89
Here we give the phase 2 algorithm to process the set formula (1):
Step 1. Set i=1;
Step 2. Store the i-th candidate set §
Step 3. Set j=2;

i1}

Step 4. Set x equal to the match value of set Sij—l;
13}

Step 6. Set j=j+l; 1Is j>n(1)? 1If so go to step 7, if not go back to step 4;

Step 5. Filter x-valued keys according to set S

Step 7. Set i=i+l; Is i>m? If not go back to step 2, if so we are done.
As a result of the algorithm, the key in the entry whose ML-field is equal to the
final match value, is a matched key of (1).

In short, the algorithm first stores the keys belonging to a candidate set as
candidates of matched keys(step 2), and then reduces them gradually by checking with
the sets following after the candidate set(step 5).

The irreducible minimum size of the hash table does not exceed catd(glsil).

In the situation that the table size 1is fixed, several ways to reduce the
processing time are considered, e.g.:

i) When a set is stored in step 2, choose a set whose cardinality is as small as
possible. In other words, place the smallest set at the first position of each
elementary intersection in formula(l).

i1) Arrange the sets in each elementary intersection in formula(l) in such a way that
the number of remaining keys which passed the filﬁering process of step 5 18 reduced
as fast as possible.

ii1) Arrange the elementary intersections of formula(l) in an ascending order of the
size card(?\osij) » (1gign).

In gegaéal, requirement ii) and iii) are hard to insight in advance. On the other
hand, requirement i) 1is relatively easy to satisfy by modifying the algorithm.
Further, the effect of requirement i) is greater than that of the rest, as is proved
by experiments in the following section,

3. Some Experiments

In the experiment, a basic set operation to get the intersection of three sets
SA’ SB and Sc is simulated and evaluated by employing the separate chaining method
with overflow area[l]. The table size is 2000. Varying not only the cardinality of
each set(, which influences the load factor) but also set formula(, which influences
the filtering sequence of sets), six cases(casel.l — case2.3) shown in Table 1 are
executed. Computer generated pseudorandom numbers are used as keys. Before using
them, we made xz—test for Poisson distribution at the 5% significance level.

Table 1 The cases executed by simulations. Table 2 Summary of results of simulations and
theoretical values.
cardinal number of each set set function| case no. T
card (S4)=1000, card (Sp)=500, card | Sx-Sp-Sc| case 1.1 \\| observed value theoretical value
. . 1
;Sc)“lgo, cord (Sa s.)-‘z:o. card (Sp Sc-SpeSa| case 12 ' total ‘ average ota average
sc);)=.3(;xrd (Sc*S5a)=40, card (Sa- s — PR e ™ pom ™
i eTaa | e case 1.2 286 123 2054 121
card (S4)=1800, card (Sg)=900, card | Sp-Sp-Sc | case 2.1 case 1.3 2026 1.19 1954 117
(B)=360, eard (S4-59) =360, card (S |75 T T e 2.2 care 2.1 6612 2.16 6532 2.14
Sc)=180, card (Sc+Sa)=72, card (Sa~
Sp-Sc)=54 Sc*Sa*Sp | case 2.3 case 2.2 3807 124 3746 1.22
case 2.3 3699 121 3638 119

90

The efficiency of the algorithm may be expressed in terms of the average number
of table access operations(i.e. probes) that occur 1in hashing processes included in
step 2 and step 5. Simulations were programmed and run ten times for each case. The
results of the simulations are listed in Table 2, where 'average' columns indicate
the values averaged by dividing by the total number of keys, i.e. card(SA)+card(SB)+
card(SC).

It is easy to estimate analytically the average number of probes needed to get
the intersection of three sets. Here the calculation process 1s omitted. But the
results of theoretical evaluation are presented in Table 2.

Comparing case 1.1 or case 2.1 with case 1.2 or case 2.2, respectively, the
effect of requirement i) is proved. The difference between case 1.2 and 1.3 or between

case 2.2 and 2.3 indicates the effect of requirement ii).

4, Extending to General Set Formula
4.1 Necessity of Extention

Every set formula can be rewritten in an equivalent disjunctive normal form. Thus
the algorithm given in section 2 is theoretically applicable to any set formula.
Consider, however, an example set formula S,+(S;+S3), which may be transformed to
S,°S,+S,°S3. Then the processing speed will be considerably slowed down, since set S,
should be stored twice. Therefore, it is desirable that there is an algorithm to
execute any set formula in the form as it is, which we call direct execution.

In the following section, we give a direct execution algorithm for general set
formula containing no complementary set. The fundamental idea is similar to that of
section 2.

Here we extend and redefine the term determinating set. When a given set formula
contains parenthesized subformulas, assume each of them to be a single set, Then the
original set formula can be regarded as a disjunctive normal form. Therefore, the
determinating sets are determined by using the definition given in section 2.1. If
the determinating set is a parenthesized subformula, then apply the above rule again
recursively.

Similarly, the term candidate set can also be extended and redefined, but the
manner 1is omitted here.

For example, consider the set formula:

(S1+S20852)+(Su+ S5s+(Se+ S+ Ss)
where the determinating sets are S,, S¢, S7 and Sg, and the candidate sets are §,;, S;
ans Sg. Especially paying attention to subformula (S;+S;*S3), the determinating sets

are S; and S3, and the candidate sets are S; and S;.

4.2 Preprocessing of Set Formula(Phase 1)

The rule for assigning a match value to each set 1is similar to that given in
section 2. Roughly speaking, assign serial numbers from left to right with the
restriction that the determinating sets in each parenthesized subformula should be
assigned the same value.

For example, the match values assigned to set formula (2) are as follows:

91

(S14+82+ 53) « (Se+Ss + (Se+S1))+Ss '
2 1 2 4 3 4 4 4 2"

where the final match value is 4.

In section 2, the match value of S (liiim, 2¢3<n(1i)) 1is used to filter

1j-1
candidate keys according to S in step 5. In the case of general set formula,

however, this does not hold. ;gerefore, another value, called check value, 1is
introduced, which is assigned to each set so that the filtering process may work
correctly. The basic rule of assigning check values is as follows: with respect to
each intersection operator (i.e. '+'), the final match value of the left-hand sub-
formula of the operator becomes the check value of the candidate sets of the right-
hand subformula. The set that cannot be assigned a check value by the basic rule
must be a candidate set of the original set formula and is assigned zero.

For example, the match values and the check values of the set formula (2) are

as follows:
(S1+S2+ S3)+ (Sa+Ss+ (Ss+S7))+Ss

match value 2 1 2 4 3 4 4 4 @M
check value 0 0 1 2 2 3 3 0)

In conclusion, what phase 1 should do is to assign a check value and a match value
to each set of the given set formula. A concrete algorithm of phase 1 1s presented

in Appendix.

4.3 Execution by Using a Hash Table(Phase 2)

After the completion of phase 1, the main execution process using a hash table is
started. Let S1 mean the i-th set from left in the set formula and let check(Si) be
the check value assigned to set Si' Let m be the number of sets appearing in the set
formula. Then the algorithm of phase 2 takes a simple form as follows:

Algorithm of Phase 2,

Step 1. Set i=1;

Step 2. Set x-check(si);

Step 3. If x#0, then go to step 4. Otherwise, store Si and go to step 53

Step 4. Filter x-valued keys according to set Si;

Step 5. Set i=i+l; If icm, then go back to step 2. Otherwise, we are done.

As the result of the algorithm, the key in the entry whose ML-field is equal to the
final match value is a matched key of the given set formula.

Now let k be the number of intersection operators appearing in a set formula.
Then, notice that the final match value is equal to k+l. Thus rlogz(k+1f| bits are
needed for the ML-field to process the set formula.

5. Conclusion

We have proposed methods to perform set operations by using a hash table. Two
algorithms for disjunctive normal form and general set formulas are presented.

In this paper, the influence of complementary sets on the algorithms has not

been considered at all, which is the future problem.

92

REFERENCES

Knuth,D.E. The Art of Compute
Wesley(1973).

Furukawa,K. Hash addressing with conflict flag, Information Processing in Japan,
Vol.13(1973),pp.13-18.

Nishihara,S. & Hagiwara,H. An open hash method using predictors, ibid., Vol.1l5
(1975) ,pp.6-10.

LY
1)

2)

3)

APPENDIX An Algorithm of Phase 1

A stack 1s used as the work area. Fig.A shows the structure of each entry of the
stack, where the fields of set id., match and check are used to hold a set identifier,
a match or final match value and a check value, respectively. The handling of paren-

theses is performed by using delimiter fields.

Let p indicate the position 1in the set address lT" y | match | check [aetimiter |

formula where the process is in progress, and Fig. A Structure of an entry of the stack.

let a indicate the address of the stack.
position of the first V is O.

The
The initial

values of p, aand v are 0, 1 and 1,

Table A An algorithm of Phase 1.

respectively. next | present operation
delimiter (a)=delimiter (a)+1;
The algorithm of phase 1 is shown in] free pmptl; e
Table A. In the algorithm, if the symbols SET | free setid i:"“’ﬂ'"r“
p=p i
placed at the p-th and (p+l)-th positions SET match (a—L)mv; check (a)mv;
vev+l; pmptl;
agree with the symbols 1in the columns of —
1 ']] L1: weew—1;
present' and 'next' of Table A, then the if march (w0 thes match (w}imv:
) 1f delimiter (w)=0 then go'te L1;
corresponding operations in the delmiter (mmtetiaiter (ot
' ' check (a)=match (a—1);
operation' column are applied. vt ls gl
For example, the results of the wea;
L2: wemw—1;
processing of set formula (2) are shown LL: if w=1 then L3: begin
. check (a)=check (w);
in Fig.B, which coincide with (2''). | sET p=p+1
| ond
{ eloe
+ i delimiter (w)=0
(81457 Sa) (84454 (S5+5,)) 455 ‘ thes go to L 2 else go to L 3;
PO MLELY 14 u::::,;_1
Ms.'s,'sw IRMENEE N HENN) If delimiter (w)=0 then go te L 4;
delimiter (w)=delimiter (w)—1;
. goto LL;
10 B SET p=p+l;
9 weeg
g 8 j [4) LS waw—1;
7) if delimiter (w)=0 them go to L 5;
2 : 4 *0 delimiter (w)=delimiter (w)—1;
4 [5414 0 p=ptl;
3 [5a]2 wea:
2 2 | 1 0 L6: wi=w—1;
! 1] 2]0])*0 v free if match (w)40 then go to L 7;
I o match (wh=v;
§ = §§ :’_, L7:if w=1 them go to END
g % €3 5 else go to L6;

Fig. B An example of preprocessing (Phase 1).

