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A Synthesis Theory of Curves and Surfaces for CAD

Mamoru HOSAKA* and Mitsuru KURODA**

Abstract
Based on a model of manual curve construction process, curve and surface synthesis
methods, which are useful in computer aided geometrical design, are developed. Besides
computational methods, manual graphical procedures for shape synthesis are presented.
And concise and useful expressions for Bézier's curve and surface can also be
introduced from our basic equation.

1. Introduction

This paper deals with methods of synthesizing curve and surface which can be used
in computer aided geometric design. In design process, shape of a curve or a surface
has to be controlled locally as well as globally to meet designers' requirements which
are not all mathematically expressed. Therefore, interactive and graphical
construction procedures have to be built in the method.

Bézier(l)used a polygon to control designer's intended global shape of a curve
segment, whereas Riesenfeld(e) adopted a series of points for 1local control of
connected curve segments. Both of their methods give simple means for constructing
and controlling the shape of curve, However, their derivation processes are not
straightforward and geometric characteristics of constructed curves are not all

explicitly shown. Accordingly, we developed new methods(B)

which are physically
understandable and more flexible in use without losing the favourable features of
their methods. Our methods are based on manual procedures of drawing, in which one
draws a new curve over the o0ld ones by controlling the movement of his pencile. We
simply formulated the simulated procedures, With our methods, a curve with intended
geometric features can be constructed numerically as well as graphically. And concise
expressions for Bézier curve and surface are also derived from our theory. Useful

relations and applications can easily be obtained with these expressions,

2. Basic equation, its solution and characteristics

A new curve segment is generated from moving average of the adjacent old curve
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segments. A curve segment R..) is denoted in a parametric vector form, where i and n
mean the i~-th segment and the n-th generation and the parameter t varies between 0 and
1., R..)is defined as follows.
1
Ri()= S‘w(r)R.,.-x(r)dr+S;w(r)R..x,.-x(t)df ,te[0,1]. (2.1)
where w(t) is a weight and the following condition is assumed.
! r)dr=1
fmtae=1 (2.2)
At the initial stage of curve generation, a segment R..:) is defined to be an isolated
point P .
Riot)=Pi foolt), foolt)=1 , (2.3)
Generally, R..t) is written as follows.
&,.(z):j_}":o Piifin) | (2.%)
Next conditions can be derived from eq.(2.1).
1
Fitt)={ wte) £tz (D) f .0
1
fu,.(t):Stw(r) Fo.n(t)dr (2.5)
t
Furt)={ O for i)
and
25 1 a1
z7 "‘("‘Sow(’)ji% fram{t)de=1 (2.6)
Eq.(2.6) can be easily proved by mathematical induction and this result shows that
eq.(2.4) is unaffected by coordinate transformation. It can be proved that the
influence of a vertex on the shape is limited within n+l successive segments and has
one maximum. This means that local shape of the curve can be modified smoothly.

The weight w(t) in eq.(2.5) is
used to alter the influence functions.
Eq.(2.5) and eq.(2.6) hold even if
w(t)'s in every generation stages are
different. If all the w(t)'s are 1,
the influence function is obtained in

a closed form.

Funl)=% (1)t i (nmim )"
n! j=o

=$£;bdy-“ﬁpﬁ~j+bﬁr . (2.7)

(idn=3

Py P

Fig.1 Quadratic curve-(i) and cubic curve-(ii) defined by given
data points {Pi} .
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3. Practical method of shape synthesis

In the following discussion w(t)=1 is assumed for simplicity. As the next

relations hold from eq.(2.1),

ét;n 1= Run @) - Ren-s (f), Rin (B =Ropna b -)k«nwa&)*kéﬂi(ﬁ)( 3.1)
Geometrical features of the curve such as position, tangent, radius of curvature at
each connecting point are easily obtained graphically,

When n=3, the above relations are shown in Fig.l. When a sequence of points (Ri}
on a curve 1s given and their successive distances are not extremely different, the
corresponding vertices (P} can be approximately given by the following formula.

P,=2V§j}i0,a1, a=-24V7 ,
where @, is the middle point of R.., and R..,. This approximation can be extended to

surface construction such as given below,

4 4
Pu=3 T T Seweicatcl (3.2)

where p,'s are vertices and S.'s are the corresponding points on the surface.

4., Relation to Bezier's curve

In this section we consider one curve segment. We modify eq.(3.1) slightly as
shown below.
Ro,o(t)=n (R, 1(t)— Roa1(t)} | (L.1)
We removed the continuity conditions of two curves R ..() and Ro.-i(t), Now, let sequence
of points {P} be given. Shift operator E for subscript of p's is introduced to
simplify the notation. The algebraic rule of integer exponent can be applied on E.
Then the solution of eq.(k.l) is
Ro{(t)=(1—t+tE)Ps (L.2)
Ro..(8)=(1~t+1E)Ro,n-i(t) =(1~1) + Ro,a-1(t) +t Ry, 0-(t) | (4.3)

Bézier defined a curve as a vectorial sum of polygon sides {aj multiplied by the
influence functions shown in eci.(h.6), which he gave without much explanation. His
expression can be derived naturally from eq.(4.2) as follows. Since Pi-Pi=(E-1)Po=a
by setting

z=(1-E), $(x)={1-(1-2))/z , (4.4)
We obtain
Ro..(t)=Po+té(z) a1 (L.5)
As the function ¢(z) is a polynomial of degree (n-1), it is expressed by Taylor
expansion around x=t, as follows.

Bo.)=Pet T %(__—1‘-))!:~¢“"’(t)-m ] (4.6)
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This coincides with Bézier's expression.

By the binomial expansion of eq.{4.2) with respect to 1-t and tE, the following

expression is obtained.

Ro.(t)= _};; oo ti(l—gy' o Py,

(&.7)

This is the expression by Forrest(h). Eq.(4.2) or eq.(4.3) indicates directly that a

point on the resultant curve is determined by the 1linear

corresponding points of the previous two curves.

interpolation between the

Other useful formulae can be also derived easily from eq.(4.2). By expanding with

respect to t,

Ro.u(t)= ‘_{; CtlE—1)'Py = ﬁu Lt (1—E)P,

(4.8)

where (E-1) and (1-E-l) are the forward and the backward difference operator, 4 and v,

respectively., By differentiating eq.(k.2),
""v"”(‘)=(£7)1 (1—t4tEp=i - (E~1)' - Py |
This shows that the curve R..*(t) has Bezier's expression.

and 1 are expressed in terms of (P}, vice versa.
i - n! —1) .
Ro.« (0)_(7:—{)!(5 1)« Po

) ! i
Ra,.m(1>=(—”j—l)!(1—fz 1p,

Pi= (141} Po=t 5 (n= )l 1€, « Ro.ur(0)
n! /=0

(4.9)

The values of R,."() at t=0

(k.10)

Pai= (1—(—E ezt £ (<1 + (= j)l - C, - Ruuh(1)
n! j=o .

The relation between these (P} and (P} in eq.(2.4) (now written as (P} ), which give

the same curve, is written as follows.

=5+ '-fo P ga(-/)"‘: ConCke1) B,

(4.11)

A surface expression for rectangular meshes (similar to eq.(L4.2)) is given as

follows,
S(u, v)=(1—u+uE)"(1—v+vE:)"Poo ,
where El’ E2 are shift operators for subscripts i, J.
A surface for triangular meshes is expressed as follows.
S(u, v, wy=(u+vEi+wE)"Poo ,
where u+v+w=l and u,v,we[0,1].

5. Connecting conditions and curvature

(4.12)

(4.13)

In this section, we treat the curvature and show a method of calculation of radius

of curvature. Radius of curvature, which has the dimension of length, is the

important quantity to characterize the shape of a curve.

Curvature vector njp of a



79
parametric curve R() is given as follows.

OH="T (5.1)
where ¢, t, » are the radius of curvature, the unit

tangent vector, the unit normal  vector,

respectively. As the curvature is the normal

component of # divided by R:, that is, |R) is a mean Fig. 2 Graphical relation between &, % and o,

proportional, there 1is a simple geometric relation as shown in Fig.2. If the
characteristic polygon (P:} is known, 4 and K at the ends of curve segment are
obtained as shown in eq.(3.1) or eq.(4.10). Therefore, we can easily connect curves
with continuity of curvature, though R has discontinuity at the connecting points,
Even a number of curves of degree 2 can be connected with continuity of curvature. A
curve of degree 3 can be determined completely with curvatures and tangents being
given at the both ends. This is because there are two unknowns in Bézier's polygon:
magnitudes of two sides, and there are two relations between curvature and unknown

variables. Its solving method is not complicated.

We presented a new theory and practical methods of constructing curve and surface
vhich are used in CAD, More thorough discussion about connection of surfaces will be

given in another paper.
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