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Some Resuits on Syntheses of Sorting Networks Based
on the Two-dimensional Arrangement of Signal Lines
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Abstract

In this paper, we investigate some conservative properties of partial odering *
generated in the process of synthesis of sorting networks that use comparators. An
improved synthesis algorithm for 22r+1 inputs and an algorithm suitable for the synthe-
sis of sorting networks that use 4-sorters are derived from these properties.

1. Introduction

The study of sorting networks that use comparators is motivated by such areas of
research as permutation networks, nonadaptive sorting algorithms for pipeline computers
and parallel sorting algorithms, as well as by the desire to build special hardware
for sorting. Synthesis algorithms for sorters usually give rather economical construc-
tion for the case where the number of inputs has some special forms, but lose their
effectiveness for the case where the number of inputs has not such forms.

In this paper, we study some improvements on N-sorter construction based on some
preservation of partial ordering relations generated in the process of synthesis.

2. Preliminaries

Without loss of generality, in this paper, it is assumed that we study the synthe-
sis of switching circuits which sort any given input sequence, which is a permutation
of I={1, 2, ... , N}, in ascending order. Furthermore, for clarity of discussion, the
mutual ordering of signal lines is fixed through the network, as shown in Fig. 1.
A denotes the set of line numbers and is equal to {0, 1, ... , N-1}. ¢(Z), (Zed) de-
notes the datum (eI) on the signal line Z. Thus, ¢ is a function mapping 4 onto I and
is called the data function. Let SN be an N-input sorting network, or N-sorter. '
(7 : J ) denotes a comparator, or Cz—cell, which manipulates the data on lines Z and
J. The equation X ( Z : j ) = Y means that Y is the resulting sequence which is ob-

tained by applying ( 2 : j ) to the sequence X. A Cz—network is a network with ¥ .

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 17, No. 11 (1976), pp. 1033~1040.
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inputs and N outputs constructed only by Cz—cells.

|6] denotes the number of C,-cells in C,-network 8 SO —t $0
i) Gt sy
and ¢ . denotes the data function at the outputs of QRN 4 o FIN AP LBl
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Definition 1 Let o be a Cz-network, and T = {t, [g%u =min{ 8°(0), #' ()
I — v FU) =max{ #10), #'0)
| t. 1s a nonnegative integer, and t.<t, for i<j}. $IE} < PO <JSH-t
1 T J Fig.1 Sorting network Sv with N inputs and its
S(a, T) is defined the C,-network achieved by 2::2;: ot Greell, usually called  com-

replacing each cell ( £ : jJ ) in a with a cell ( ti : tj ).

" plq " and " p//q " represent the quotient and the remainder that result from
the integer division of p by g, respectively.

If P is a partial ordering relation, the relation CP is defined as follows: CP =
{ (x, y)ePlz ¥y and (x, y )ePand ( 2, y JeP=> =y ory =z }.
Definition 2 The function ¢ is consistent with a partial ordering relation P over 4,
1f "iPjand T # 5 => ¢( 7 ) <9(J)".
Definition 3 A partial ordering relation F over A is called a shift if (1) ( Z, J de
Fand (2', j)eF =>4 =¢',(i1) (2, J )eF and ( 2, J' )eF => j = j', and (i1i)
(1, J )eFk and (72, J )efk'-> k = k'. A maximal sequence of signal line numbers il,
iz, e s ik ( ijeA, J=1, ... , k) such that F( ij ) = ij+l (0<d k1) 1s
called a chain of the shift F.

Given the data function ¢1 and the shift F over 4, for any chain il iz e ik of
F there exists a unique data function ¢2 such that (i) ¢2( il Yy eee ¢2( ik ) is a
permutation of ¢1( il ) I ¢1( ?k ) and (11) p < q => ¢2( ip ) < ¢2( iq ). Then,
if the above-mentioned data function ¢1 and ¢2 are consistent with the partial order-
ing relation P over A, it is said that F preserves P.
Definition 4 A( dl, d2 ) denotes a two-dimensional arrangment of A with dl rows and
d2 cobumns. Then, the element of A corresponding to line number x1+d2-x1 is repre-
sented by an ordered pair ( xl, z, ).
Definition 5 Let a partial ordering relation P over A( dl’ d2 ) be defined as follow:
for any two elements ( x, %, ) and ( ml’, xz' ), if x = xl' and x2<x2', or if z, =
mz' and ml<zl', then ( x5 %, ) P ( xl', xz' ).

If the data function ¢ : A + I is consistent with this partial ordering relation

P, it is said that the set 4 is in the two-dimensional grid relation. In this paper,

we will derive synthesis algorithms based on this relation; and the following is its

basis.



Theorem 1 [2] Let shiftgs F and F, be defined over

Table 1 Numerical results of comparison with
A( dl-’ d2 ) as follows: for X = ( xl’ x2 ) and ¥ = three typical synthesis methods

ADE ] ;
( Y1s Yy ), (X, YeA ), (X, Y )epa<=> z, + a=y, ;;}E\\‘ = | s s12 | 204 | s

1 191 wan | o1zt | ssare | szremy
3 ; 60628 | 340696
(2=1, 2); (X, Y)EFb <.>x7:+bi=yi(7'=1' ;11 | 198 1455 9888

187 1419 9347 54533 309972

: thod (1)
2), wvherea=(a,, a, ), b= (b, b,), a2 + a2 ;;%‘:?t‘::tn:mnuumofmmma
) ) 1 2 1 2 1 2 o Van Voorhis’ method .
# 0, and by + b, # 0. T: The method in This pape

Then the following are euivalent : (1) Fa preserves Fb* and Fb preserves Fa* H
(11) aibi 20 (<=1, 2), where R* is the reflexive transitive closure of the rela-
tion R over A.

Corollary 2 Column-sorting preserves row-sorting and vice versa.

Theorem 3 [4], [5] Let a be an N-sorter. Let 8 be the Cz—netwotk obtained by deleting
the Cz-cells, through which the maximum datum input at signal line ( N¥-1 ) should pass,
from a. Then B is an ( N-1 )-sorter.

Given an algorithm for some special form of the number of inputs, we can derive a
synthesis algorithm for the case where the number of inputs has not such a form, by
the iterative application of this theorem. But, when this is applied to the Van
Voorhis' algorithm for 221"+1 inputs, it is less effective than the Batcher's one, as
shown in Table 1.

3. Preservations of Partial Ordering

Two shifts F. and F, over A( dl’ d2 ) are defined as follows :

1 2
(i:j)Fl(i:j""l);O:i:dl-].,():j

A

d,-2

(4, §)F, (i+l, §) 3054 5d-2, 05

A

d2-1

* UA

Then, by the corollary, F2 preserves Fl . Thus, we can generate the grid relation by

cascading a C _-network o, which realizes P, to a C,-network ay which realizes F a

2 2 2 2
and a, are given in the equations (2) and (3).

1° 1
w=a(d,) SCald,), (Al (Mdy) =11}) ... 5Caldy), {A] (Md,) =d,-1D(2)
a= SCalCdy ) (Al (A//dy) =01) ... SCaCdy ), { Al (A//dy) =d,-1}) (3)

After generating the grid relation over A( dl’ d2 ) by a , the set A is partitioned

1%
into p subsets as follows : Qi = { x| (( X/d2 Yip)=%k1}, 0<k<p-l %)

In the following discussion, we assume that dl = dl"p ; but its extension to the
general case is easy.

Corresponding to Qi, let the Cé-network 62 be defined in the equation (5) and let

the shift Fb be defined in the equation (6) and (7). Then 82 is a realization of Fb.
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=500,0d,", dy), B wen SC8,(dy"s dy ), &) el (0,04, d,), &) (5)
2

(i, 4 )F(v,,,7+1) o:i;d1—1,0§j:d2— (6)
(i, d2-1 ) Fp (i4p, 0) 5 0 i 1< dl—p-l %))
Theorem 4 The shift Fb preserves the partial ordering relation P ( = CP+ ) specified
by C,, defined as follows : ( Z,J ) CP (%, 41 ) 5027 < dl—l, 024 g d2-2,
(i,J')CP(i+1,j);0;i:d1—2,0;j§d2—1.

4. An Economical Construction of S )

In this section, it is assumed that N = 221‘+1 dl = ZI: and d2 = 2r+1.
After generating the two-dimensional grid relation over A( Zr, 2r+1 ) at the outputs
of a,8,, the set A( Zr, 2r+1 ) is partitioned into two subsets as follows : One of

them is the set B( 2r, 2 ) = { (%, § )eA| J is even }, and the other is the set

c( 2p, 2Ty ={ ¢ i, § )eA] § is odd }. Clearly, each of B and C is in the grid rela-

tion because of the transitive law of the partial ordering.

Let the C,-networks 82' and § be defined as follows :

2

By’ = SC 0, ¢, 27, QS ) SC 8, 2F, 27, Qi ), where 6,( ¥, 2 ) 18 a ¢,~network

which satisfies such acondition that a a, 9 is a sorter for A( 2 N 2 ).

- o J+} G+ 2041 G4 2r+l
8 6r—151~2 e 50, where Gj (1:2 (3 2V T42) ... (2 2 1:2 -2),

0 2 J 3 r-1. Then, the following property is obtained.

Theorem 5 Cascading the Cz-network Gj to the C —network ulazﬁz r—161~2 e éj

(0 < J $r-2 ), the data function ¢ a B 5 ¢ . preserves the partial
cee 8ig

1 272 r—l r—2
ordering relation specified by the equations (2), (3) and (5), and the relations aug-

mented by means of the applications of Grhl’ e 5j+1'

Applying this theorem in the case where j = 0, we can obtain the following ine-

qualities: $( 7 ) < ¢( 2+l ); i =1, 3, ... , 22r+1_3. Since ¢ preserves the relation

specified by the equation (2), then ¢( 7 ) < ¢( 4+l ); £ =0, 2, ... , 22r+1_2.

- [
Thus, the 02 network aluZBZ § is a realization of 522r+1'

Among the synthesis algorithms at whose first stages the k-dimensional grid rela-
tion over the k-dimensional arrangement of A is generated, it is known that every
algorithm requires the number of Cz—cells represented as follows [3]: %N(Zogzﬂ)z-
ANZogZN40(N). Setting A = Al for our construction and X = Az for the Van Voorhis' one,
= A from the following equalities.

; 2r+1

we can derive that Al
|oy0,8 él-la|+|u|+|6'l+lsl- 2l

(2r+1)2 227 o1y + 02271

1
Thus, the method introduced in this section keeps the efficiency of the Van Voorhis'

algorithm. Actually, as shown in the numerical example of Table 1, this method (III)
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18 superior to the Batcher's method (I)
and the application of Theorem 3 to the

Van Voorhis' one (II).

5. Construction of S » by 4-sorter
2
In this section, based on the case

where p = 4 and d, = 4 in Theorem 4, we

will propose an efficient construction

of Szr that uses 4-sorters. 2”18,

i, o
-9
First, the C -network a.a,, which
’ 2 1%2° ol feabe)
is derived by dl . and d2 =4 in atg Ayt 24 :Z/é':, Cr
"
(a) Cp, (Partial ordering (b) A shift Ft, which consisty of
the equations (2) and (3), is applied relation P4=C, and (223 ching oG bt
@ is consistent with 7). i i
to generate the two-dimensional grid 14/ (8 consictend whh AL ::i.:::: P':."ﬂ"mt'a] ondering
Fig. @ Partial ordering relation Cp, (P,=Cp,*, and P, is generated at the
relation. Then, partitioning the set 4 output of C,-network ,d,4,) and a shift F;, which conserves Py
into four subsets Qg, Qi, Qg and Qg by setting p = 4 in (4), and applying the Cz-net-

work Bl. corresponding to (5), the data function § is consistent with the partial

41928,
ordering Pl. specified by CP in Fig 2(a). This corresponds to the case where p=4in
Theorem 4.
Now, introduce the shift Ft as follows: (4i+1, loi+4)eFt; 0<zg 21‘-2-2,

(4342, 4itS)eF,; 0 5@ g 2722, (4043, 4i+6)eF,5 0 ¢ i g 2 -2
This shift is depicted in Fig. 2(b).

Theorem 6 The shift Ft preserves P4.

The Cz—network Y which realizes the shift Ft is given as follows.

. r_ . r—
y = (1:4) 3(53,02) S(S[.,Ca) (SA’C ) S(S3’Czr-2) (2°-5:2"-2).

22

After realizing Ft" only the relations among {4k-2, 4k-1, 4k, 4k+1} (1§k_<l21h2-1)

are left ambiguous by the theorem. Then, let the Cz—network § be as follows:

§ = 6162 cee 8 , where Gk = (4k-2:4K) (4k-1:4k+1) (4k-1:4K).

LY
Now, the Cz-network alazeaéy is an N-sorter. The number Kl. (N) of 4-sorters required

by the above-mentioned construction of an N-sorter satisfies such a condition that

K4(2r) = 8K4(2r-2)— 16](.4(21'-1.)4_21‘—1_1. This recursion can be solved as in the equation

(8), and (9).

K4(N) = %N(Zogzﬂ )2- -;—4N10g21V+ %(N—l); where r is even (8)
1 2 1 1 1
Kl.(”) = EN(ZOQZN) - Eﬂloggmill -5 where r is odd )

Besides, the direct application of the construction that uses Cz—cells to the con-

struction that uses 4-sorters is based on pairing two adjacent signal lines.

-
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The number of V,(N) of 4-sorters required by this metod is represented as follows:
=1 2_ (1,2
VA(N) 8N(Zogzﬂ) ( 3 + 3 )NlogzN + O(N), where 0.25 < A £ 0.395.

This estimation shows that the method in this paper is rather efficient.
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