Information Processing in Japan Vol. 17,1977

Stack Techniques and Suppression of A-list
for LISP Interpreter

Chiaki HISHINUMA*, Kenji YAMASHITA** and Masakazu NAKANISHI***

ABSTRACT--Some useful techniques for implementing a LISP interpreter on minicom~
puters are described. First, effective stack techniques are proposed to realize
recursive procedures peculiar to the functions of LISP. Second, a method is proposed
to suppress the excess a-list which is generated by universal functions when they
evaluate EXPR functions of iterative form.

1. INTRODUCTION

LISP language has been widely used to develop non-numerical algorithms or to
solve non-numerical problems. Especially, the implementation of LISP on a small
computer is very useful to develop some basic algorithms or to offer convenient tools
for educationl use of LISP language and recursive programming techniques.

LISP, however, has several problems of nonefficiency in processings: The rapid
increasing of the stack area caused by recursive calling of procedures and the rela-
tively low speed of processing are the typical examples of the problems., Moreover,
the data structure formed by binary lists can not contain so much information in a
unit memory space and the universal functions waste many list elements only for their
operation.

In this paper, we propose some useful techniques for implementing LISP inter-
preters which improve the processing speed and realize an efficient use of list struc-
ture, without changing the language specifications of LISP 1.5 interpreter, by improv-
ing the processing algorithm of the interpreter.

2, STACK TECHNIQUES

The efficiency of LISP interpreter much depends on how to realize recursive
procedures using a stack, The following programming techniques are effective for the
realization of the built-in functions of LISP interpreter.

1) Return address and arguments are pushed onto the stack by the called procedure and

are stored in this order.,

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 17, No.11 (1976), pp. 1002~1008.
* Musashino Electrical Communication Laboratory Nippon Telegraph and Telephone Corporation
** Bridgestone Tire Company Ltd.
*** Faculty of Engineering, Keio University

54

55

2) For iterative calling procedures* of SUBR and FSUBR functions, it is not necessary
to stack new parameiers, i.e, return address and argumenis, Therefore, the parameters
are changed in the stack directly, if necessary,

3) The return address which can be known by the called procedure are not pushed onto
the stack.,

4) Parameters, which are already referred to and will be never referred to again, are
deleted from the stack,

By extensively using the above techniques, an interpreter is realized where only
small sige is required for the stack, faster stack operation is accomplished and used
lists are set free in an early stage of computation.
3+ SUPPRESSION OF A~LIST

Let us take an example of the following EXPR function definition.

reverse(z]=revi(x;NIL]
revilzyul=(nulilxlsu;

t 3 reviledr(x];conslcarlz];ulll. (1)

The above definition can also be written as follows using program feature.

reverselxl=progllul;
L [nuillz]l d>returnlull,
u:=conslecarlzl;ul;
x:=edrlz];

golLl]
1. (2)

By the definition of the universal function of LISP 1.5, the program (1) might
cause a fatal situation, i.e. storage overflow, if x is an awfully long list. That is,
in evaluating reversel(x] defined by (1), the maximum necessary length of a-list is
2|x|+l, where [¢| denotes the length of list x, But in evaluating reverselx] def-
ined by (2), the maximum length of a~list is 2 for any list xe Therefore, it can be
said that the program (2) is more desirable than (1) for a small LISP system because
of its small size requirement on free list area., But the program using program fea-
ture might lose the elegance and easy=~to=program capability of LISP language.

We shall discuss a method in the following sections for implementing an inter—

* In general, if
F xyseee, dme(fs@y00eas@ 5gqs000s9p)
where ¢ is an expression (usually conditional) and g;,...,g, are functions, then
f is said to be <terative if f never occurs as an argument of one of the 9se For

(%)

the detailed definition of iterative procedures, refer to McCarthy.

56
preter which works as (2), even if raverse[x]is given in the form of (1).
3.1 IMPROVEMENTS OF THE UNIVERSAL FUNCTION

When an EXPR function is defined iteratively, the increase of a-list can be
suppressed by the following method:

When a new pair of variable and its value is generated in applying LAMBDA expres-
sion, a check is made whether or not the new pair needs to be really appended to a-
list, by investigating the contents of a~list ranging from the pointer in the top of
the stack to the pointer in the next-to-top.

current a-list

Case 1) If the same variable

N~ the range to be supprassed
I .

has been found in that range,

replace the content of the (X4.44) (X3.43) (X2.42) (X1.41)
value part of that pair by the — ! l L)
new value without appending ___&‘ T3 T JF= -----

the new pair to a-list,

Suppose that (LAMBDA (y) ¢) 1is applied

Case 2) If the same variable in this situation. If one of X1, x2, x3, x4
is same as y, the CDR part of the (Xi.4%)

is replaced by the value of y.
is not found, append the new
stack

pair to a~list (Fig.l). Fig.1l A-list and the stack
The above method corresponds to rewriting the evaluation part of)-expression in

the definition of apply of LISP 1.5 as follows:
eqlecar[fn];LAUBDA)-> evallcaddr(fnlsmatehpairlcadr(fnl;args;all
where matchpair is defined as follows$

matchpair[usvzal
=(nulllul)->(nulllv]»a;t >error(F2l];
nullvl>error(F31]; (3)
ask[car{ulsear(v];al->matehpairledrlul;edrivlial;
t >cons [cons [earul;carlv]]); matehpairledrlul;edrlv];all
asklx;y;al
=[nulllal »NIL;
eqla;841>NIL;
eqlecaarlal ;z) »rplacdlearlal;yl;
t rasklxsy;edrlalll,
where $4 is the pointer to a-list of the last level in the stack,

(%)

3.2 SIDE EFFECTS AND THEIR SETTLEMENTS
The method explained above may cause some side effects.

First, let us investigate the following example:
g=Allz;y); hly;functionlA[ly] seonslz3y1131],

57
k= ALl (5)
In the definition of the function g, the function 7 is referred to iteratively and
the functional argument given to & has the free variable x which is the same name as
the formal argument of the definition of A,
The value of g[A;B], for instance, should be (A.B) by definition. However, the
method explained above makes it (B,B) by the operation of a=list suppression in eval-

uating the function FUNARG. This type of side effect can be settled by copying the
portion of a~list of (FUNARG fn a) between the last level and the current level when

(FUNCTION fn)is evaluated. It can be expressed by the following modification of a
part of eval. .

eqlear(form]; FUNCTION]-> 1ist[FUNARG;cadrform];eopyala;$41],
where copya is defined by

copyalzsyl=leqlz;yl> x;
t» conslecar(z];copyalearlz];copyaledrizl;ylll. (6)

Another side effect may appear in the case of EXPR function of the following
type:s
8=A([z;y);glysfunctionlAllyl;hlx;y31311],
g=A(Ly;fnl: conelfnlecarlyllsfnledriyllil, {7)
h=)[[y;z); consly;=]],
where the functional argument refers to /1 iteratively with the free variable =z
which is the same name as the formal argument used in the definition of A.

The value of 8[4;(1 2)] should be (C4.7)(CA.2)) by definition, but by the
method discussed in 3.1 it will be ((A4.21)(21.2)) as a result of suppressing a-list
of (FUNARG fna) which is created in evaluating (PUNCTION fn). This side effect
can be settled by changing the part which processes FUNARG in apply as follows:

éqlear(fnl;FUNARG) > ilapplylcadrlfnl;args jeadrlfnll],
vhere 7 is an identity function which generates a new element of the stack, that is,
vhen an argument of 7 is evaluated, the level of stack is raised to higher than the

current,
4. PERFORMANCE OF THE METHODS

Table 1 shows the comparative data of the execution time and the number of
garbage collections for some teat programs executed by the mini-LISP, which is made
to employ the methods discussed in this paper, and by the other three LISP 1.5 inter—

preters. These test programs were used at the LISP contest (Symposium on symbolic

58

manipulation, IPSJ, 1974).

other large LISP systems in spite of its small memory capacity.

The mini~LISP has excellent performance not inferior to

Table 1, Comparison of the execution time of LISP 1.5 interpreters
System mini-LISP
name a-list pone KLISP MLISP OLISP
suppressedjfuppressed
HITAC10 TOSBAC MELCOM NEAC
machine (4%w) 3400 30 7700 2200
stack(words) ot 744 2,500
29,000
free cells 830-20 3,936 25,000
Teat VANG A 71(0) 66(0) 40(0) 330(0) 43(0)
programs WANG B 402(0) 433(1) 260(0) 630(0) 123(0)
naeo Bit A% 1,175() | 1,170(2) 560(0) 232(0)
no. ofy Dit B¥ 1,2131(1) | 1,260(2) 380(0) 1,850(0) 177(0)
([) soxt 58,044(135) 28,940(11) | 62,333(3) | 35,457(9)
*mapoar, mapcon *mapcar
HEMARKS are XFR is EXPR

5. CONCLUSION

Some useful methods for implementing LISP 1.5 interpreter are described.
First, effective stack techniques to prevent the rapid increasing of the stack
area caused by recursive calling of procedures are proposed. Second, the fact is
indicated that the excess a=list may be generated in the evaluation of EXPR functions
of iterative form, and a method is proposed for suppressing such a=list. The perform=-
ance of the methods proposed here was also shown to be satisfactory by comparing the
mini~LISP which is made to employ our methods on a minicomputer with other LISP 1.5
interpreters.

ACKNOWLEDGEMENT

The authors wish to thank Prof, S. Mori of Keio University for his hospitality

and encouragement,
REFERENCES

(1) McCarthy,J., et al.s LISP 1,5 Programmer's Mamual, The MIT Press (1962)
(2) Nakanishi,M.: LISP contest, bit, vel.7, no.3 (1975)
(3) Nakanishi,M,, Hishinuma,C.,, Yamashita,K., and Sakai,T.: A design of LISP inter-
preter for minicomputers, Minicomputer Software, North-Holland (1976)
(4) McCarthy,J.: Towards a mathematical science of computation. In 'Information pro~

cessing 1962', Proceedings of the IFIP Congress, 1962. North-Holland (1963)

