Information Processing in Japan Vol. 17,1977

The Structured Design Method of Simulation Programs

Yukio KANEDA*

Abstract
A new design technique of discrete event simulation programs is
proposed. The new world view "actor" is introduced. We regard a system
is composed from several modules and actors play active roles of them.

By describing these actor routines, we can organize the simulation

program easily.

1. Introduction

In proportion to increasing the complexity of the simulated system,
the simulation program of it becomes complex and hard to program and
debug.

We propose a new structured design method of discrete event type
simulation programs. In case of writing a simulation program, it is
very convenient if we can easily reflect the structure of the simulated
system to the structure of its simulation program. However, in convent-
jonal simulation languages all event routines are arranged uniformly
under the main routine. We introduced a new world view "actor" and
made it easy to reflect the structure of the simulated system to the

structure of its simulation program.

[;nitializationj
¥
[Event selectio&%

K - d 3
Event vent [Evendt
(1) (2) ] (n)
) S 1

Fig.l The control structure of the discrete event
simulation program.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 17, No.9 (1976), pp. 782~788.

* Faculty of Engineering, Kobe University

37



38

2, Problems of the conventional simulation languages
Conventional discrete event simulation languages have the
following shortcommings.
1) All event routines are arranged uniformly under the main control
routine. So it is very difficult to compose the program which
explicitly reflect the object system's structure.

2) There are no effective facilities which prevent the ripple

type errors.

3. Structured design method

We often find the simulation program is composed of the several
event routine groups of which event routines are connectd relatively
tight and that connections between these groups are soft.

Consequently, we can divide the movements of the control between

event routines into two types.

1) Control movement between tightly connected event routines.

2) Control movement between softly connected groups.

[Initialization |

[Group selection [¢

= 1
Subevent Subevent ubevent
selection gelection selection |
ubevent Subevenj ubevent Subeven Subevent| PBubevent
(1) (n1) (1) (n2) (1)
|

Fig.2 The control structure of a simulation program which is

composed of several subevent routine groups.

3.1 Concept of an actor

We consider the system is organized of a set of actors each of
which works concurrently and communicates with one another. Every
actor routine is a description of one of the basic activities of the

system. When an actor routine is activated (called), it recognizes its

own situation and executes some activities.



39

These activities include following two functions.
1) To change the system environments which are represented by the
system variables.

2) To send an activation signal to other actor.

3.2 Structure of the simulation program

A group routines which describe an actor are composed of several
subevent routines and one control routine. The control routine rules
locally its subordinate subevent routines. The complete simulation
program is composed of these actor routines and one main control

routine which rules these actor routines.

3.3 Control of routines

Simulation is made by dynamically calling these actor routines or
subevent routines with each other. We categolize these calls into
following three types: (1) calls bewteen subevent routines in an actor,
(2) calls between subevent routines on account of time laps and (3)
calls between actors.

Type (1) is controlled by the subevent selection part and type (2)
is controlled by the main routine. All future subevents are sorted
in order of their occurence time. The main routine removes the earlie-
st subevent and updates current time and calles that subevent. Type
(3) is also controlled by the main routine. When an actor activates
another actor, it returns control to the main routine with the target
actor number. The main routine checks its regularity and calls that

actor.

L, Example
This section shows how to model a time sharing system by the

actor concept.

4,1 Model system
Our time sharing system is consist of TTY terminals, one CPU,

one main memory and one disc device.



40

%”erminalsf——J CPU L“‘*Dism
Main mémor

Fig.3 Time sharing system
4.2 Model building
The simulation model is consist of three actors.
1) Actor(l) simulates the CPU and the main memory part. It has
four subevents.
(1) Subevent(1l) requests for & main memory area.
(2) sSubevent(2) requests for the CPU.
(3) Subevent(3) releases the CPU for I/O.
(4) Subevent(ls) releases the CPU and the main memory area for
the end of Job.
2) Actor(2) simulates the behaviour of the disc, and has two
subevents.
(1) Subevent(l) is for initiating the disc I/O.
(2) Subevent(2) is fo$ terminating the disc I/O.
3) Actor(3) simulates the behaviour of the users at terminals and
has three subevents.
(1) Subevent(l) indicates an arrival of a user.
(2) Subevent(2) makes parameters for a Jjob.

(3) Subevent(3) processes the end of a job.

5. Conclusion

The merits of our design method are followings,

1) It is easy to test the correctness of the program.

2) We can limit the size of actors as we can understand their
dynamic behavior easily.

3) Each actor is relatively independent from others, we can make
their side effects and ripple errors minimumn.

L) The system is divided into several inter independent actors,

the modification of the program is easy.



Initialization

Eet éa_x_:agnteu l

A=3,E=1,T=0

{sce

41

Yis
Ecmlnation]
.—4—-—-———ﬁ

Call actor(A)

actor(l) A=l
J___L
L_-J_@D‘ﬂ@-lorz
Subevent (1) Subevent (2) | Subaevent (3) subevont(l)
£ e=2 E=3
1s
YES Ts CPU _ \YES [Releane_cpu] Eneuo cpU
memory
available? j’ uvui%ublc — nd memo.
E=3 TaTINE+CPU Schedule [Schedule (TINE)
INDCTR=3 time CPU waiting CPU or memory
CPU 1 JOB | waiting JOB
ry wait wait = ¥ l
E=3(End of 1/0 Am2 ,E= 2
M INDCTR=
NDCTR=1| gﬁﬁcri:g} ! A=3
|RETURN E=3
RETURN Schedule(T INDCTR=2
|
RETURN
actor(2) | ra2 actor(4)
Call subevent(E)
L {RETORN]
sub.vnnt(l)
Subevent (1) ! Subevent {2) E= Subevent»(,z_l Subevent (3)

E=2
|ggl¢alTﬁ-c'

ule
n.xt users

Is disc
available arrival ,
- ? Schedule (TIME)
O T-TiHE#I/ isc vaitinq
time TwTIME+
Btsc \uitl E=2 YES RNJ thinkinjl ”
-2 avajlable NDCTR=1
INDCTR=1] Schedule (1) -
TURN
RETURN ! Schedule (T) =

Fig.4 Control

E=2
INDCTR=3

structure of the simulation program.



