Information Processing in Japan . Vol. 17,1977

Top-down Algorithms for Constructing Nearly
Optimal Binary Search Trees

Yasuyuki NISHIKAWAY Yuuji YOSHIDA** and Teruo FUKUMURA***

1. Introduction

A binary search tree is an important technique for organizing large files. There
are several conventional methods for constructing an optimal (or a nearly optimal)
binary search tree. But these methods are time-consuming or space consuming and so
not applicable to practical problems involving several hundreds of keys.

In this paper, we present some methods for constructing a nearly-optimal binary
search tree. Our algorithms consist of heuristic top-down methods and Knuth's
"Algorithm K" (dynamic programming method§1) and take time proportional to ke (N is
the number of keys) and storage proportional to N.

Experimental results show good performances of our methods. The nearly-optimal
trees can be expected to suppress the increase of average search length within
0.1 Z of that of optimal tree.

2, Preliminaries

In this section, we give several definitions.

[Definition 1] A binary tree (b.t.) on a sget V={v,,v,,...,vn} is defined as
follows:

(1) ¢ (null set) is a b.t.

(2) Let T, and Tg be two b.t.s, then for YveV, (T, ,v,Tp) 1s a b.t.

(3) Nothing else is a b.t.

[Definition 2] For a b.t. T=(T,,v,Ts),

root(T)=v,left(T)=T,_ , right(T)=Ta ,JUT)= a set of nodes of T,

|T| = the number of nodes of T, 1(k)=1level of node K in the tree T.
[Definition 3] Let K={K{,K,,...,Kylbe a totally ordered set and < 1is its
ordering relation. Then a b.s.t. for K is a b.t. T such that 7] (T)=K,and

for all subtree T' of T,Vl(;'e“n(left(T')),VK)e‘n(right(T')) are in the relation,

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 17, No. 8 (1976), pp. 736~742.
* TOYOTA MOTOR Co., Ltd.

** Computation Center, Nagoya University
*** Faculty of Engineering, Nagoya University

32

33

K;<root(T')<K
[Definition 4] K(i,j) denotes{Km| i&m £j}, and T(1,j) denotes the set of all b.s.t.
for K(i,j). T(1,j) denotes an element of T(1,j). K(1,N) is denoted only K.
[Definition 5] Let{p, ,p,,...5p,} be the probability distribution of K. Then, the
4
cost of a b.t. T for K(i,j) is defined as c(T)nE.p (1, (6)+1)
2Py
[Definition 6] The cost of the optimal b.s.t. for K(1,j) is defined as
¢(1,1)= min_c(T)
TeTi,P
When a set of keys {K; ,K;,L,...,Kj} is given, some key K, will be selected as
the root of the optimal b.s.t. for K(i,j) depending on the following conditions;
(1) Pm 18 large.
(2) The difference between the weights of T(i,m-1) and T(m+l,j) is small.
(3) The difference between the depths of T(i,m-1) and T(M+l1,j) is small.
We define two measures to represent the reasonability of these conditions about
T'(TL, (k),Kk yTg (k)).

[Definition 7] (weight balance 6 of T)

Wi (k)4+p, Wr (k)+p,
O, =min (,)
k =Oin wp, Wp,

k-4 3
where,lﬂ‘.(k)-e’zl P uR(k);g:"pe ’u) -é Py
[Definition 8] (depth balbnce Tof T)
Ty mindHL) | 1y O,
where d | (k)=loga(k-i+1), dn(k)-log,_(j-k+1) and d=log, (j-1+2)
Here, we define two heuristic functions,'ﬂ,,wlwhich measures how much K, is
likely to be the root of an optimal b.s.t. for K({,§).
[Definition 9] For T=(T, (k),k,Tp (K)), H(K)=p, x &, »Ta ()P, x &' x Tk
3. Algorithms for Constructing Nearly-Optimal Binary Search Trees
In this section, we first define some notation and then present a fundamental
theorem which gives a theoretical base to the algorithms described later
[Definition 10] Let 1 be the probability that K€K is retrieved. Let & be {K|
K<K, }, Enbe {Kh(,ﬂl(}, and generally&be {K|KL-<K<K-&+1}(1-1,2, erasN-1).
Let q; be the probability that a key belonging to Eiis retrieved. Then, an N-L b.s.
t. for K, {p‘.'),{q;} is a b.t.J which satisfies the following conditions:
(1) 7 has 2+.M1 nodes and each node has either no subtree of just two subtrees.
(2) %718 a b.s.t, for a set of keys K= {&,{K.},ﬁ,,{Kz},...,{KN},E,,}.

The ordering relation on K is defined as the order in which elements are listed

34

above.

[Definition 11] The cost of b.s.t. :T R cCCD, is defined as follows:

(= Zp,l(ly("?)"’l) +z:qg 7§

[Definition 12] Let {'-1"1;""'-7'4 (j"-f‘z"} be a subset of the set {Ky,Kiyq,..
’Ki}' Then we can construct an N-L b.s.t. for these M keys and define two sets of
nodes of this tree, INT and EXT, where INTEﬁj;llsme}’ EXT={ En| OsmgM} .

If a set of keys {K ;,Kh4,...,Kj} is given, then we can construct a b.s.t. T
and an N-L b.s.t.:7 for some INT and EXT. The relation between c(T) and c(J) is
given as: c(T)=c(I) +"2;°c('r{ Em), where T{E,} denotes a b.s.t. for &,.

Now, we have a fundamental theorem for constructing algorithms.

[Theorem] 1If, in the configuration of T*, there is no element of EXT on the paths
from the root to the elements belonging to INT, then the configuration ong*

coincides with that of T* for the part pf trees corresponding to INT.

b.s.t. T (i,j) for K(1,j) and is described as A(i,j). In the algorithm, "Algorithm
K" denotes Knuth's algorithm by D.P.
[Algorithm A(1,3)]
step 1. n=j-i+l, if ngf(n), then go to step 2, else go to step 3.
step 2. (1) if n=0, then T*(i j)=¢ and algorithm terminates.
(2) 1if n=1, then T (1,3)=(¢,k; ,4) and algorithm terminates.
(3) 1f n¥2, then construct T (1,3) by Algorithm K, and algorithm terminates.
step 3. Select f(n) keys from K(i,j) by algorithm SELECT or algorithm CHOICE and let
those nodes corresponding to the keys be INT and other nodes be EXT.
step 4. Construct an optimal N-L b.s.t. for INT and EXT by Algorithm K. Let Kk be
the root of the optimal tree.
step 5. Construct two optimal b.s.t. T*(i,k*—l) and T*(k*+1,j) by algorithm A(i,K*-l)
and A(k*+1,j).
step 6. Let (T*(i,k*-l),KHF ,T*(k*+1,j)) be the optimal b.s.t. for K(i,j) by this
algorithm.
From this general algorithm, we derive three algorithms, Algorithm 1, Algorithm
2 and Algorithm 3 by setting f(n)=M(constants), f(n)=F(n) (F is a simple monotonic
increasing function and 1gF(n)gn), and f(n)=max(F(n),M,) respectively.

Two subalgorithms, SELECT and CHOICE are as follow.

35

[Algorithm SELECT]

step 1. Compute X7 (k) for k=1,1+1,...,j.

step 2. Let INT be the m keys out of { Kt’Kiél""’Ki} that have larger values of

X (k).

[Algorithm CHOICE]

step 1. INT =¢,%={K({,§)} and P=1. Let Ki,K;,... denote elements of &

step 2. p-l,iw

step 3, Select the key out of K, which has the largest value of Kand let Ky denote
the key. INT:+INT y{Kg}. Partition Kp into two subsets, one is a set whose
element is smaller than Ky and another is a set whose element is larger than
K4 . Let these set be elements ofiEif thev are not null set.

step 4, If the number of elements of INT is m, then algorithm terminates. Otherwise,
(1) 1if p<p then p<+p+l and go to stev 3.

(11) 1if p=p then+fC, P+the number of elements of & and go to step 2.

4. Evaluation of Required Amounts Table 1. Time Complexity of Each Algorithms
of Storage and Computational Time, Al INT SELECT CHOICE
g.
Let M be the number of Keys. 1 [o(N321log,N) o(N%)
0(N34 o(N 3
Algorithm K requires O(M?) (N°2) ((IOgZN)‘)
3 [on®®) | on%) (n210°)

storage for M keys. Then, all O(Nlo&ayjz) (¥610°)
of three algorithms requires (N: Number of keys)

O(N) storage when MS/ZN, where M is the parameter of algorithm 2. On the othehand,
Table 1 shows time requirements of the algorithms in several cases.
5. Experimental Results and Remarks

Our algorithms were applied to many sets of keys with frequency distribution
generated according to Zipf's law with respect to the frequency distribution of
the set of English words. Table 2. shows the degradation of the cost in nearly-

optimal b.s.t. v.s. optimal b.s.t. The degradation AC is defined by

A C= [(Tz"c ST*) x 0
C < (T%) 100 2%
where c(T) 1is the cest of the nearly-optimal tree T, and c(T*) is that of the
optimal one. Fig. 1 shows the performances of algorithm 1,2 and 3 by the frequency

distribution of AC, revealing that the performances of our algorithms are more

akin to the optimality than conventional methods(z)’(3). Fig. 2 shows the

36

performance with respect to the computational time. It validates the estimate of the
time complexity described ir 4. From theseé two figures we can see that Algorithm 2
is the best of the three with respect to the computation time, which algorithm 3 is
the best for the nearly-optimality.
Acknowledgement

Authors would like to thank Prof. Namio Honda for his invaluable advices. They
would also like to thank the members of Fukumura laboratory for their valuable
discussion.

References

1) D.E.Knuth: The Art of Computer Programming, Vol. 3, Addison-Wesley, (1973)
2) J. Broun and E. G. Coffman: Nearly Optimal Binary Search Trees, IFIP Congress 71,
3) W.A. Walker and C. C. Gotlieb: A Top-down Algorithm for Comstructing Nearly Opti-

mal Lexicographic Trees, Graph Theory and Computing (ed. by R. C. Read), Academic

Press (1972)

Table 2. Comparisons between Nearly-Optimal b.s.t.
and the optimal b.s.t.

INT SELECT CHOICE
H i
0.06 + 0.18 {0.07 + 0.20 | 0.11 + 0.24 | 0.11 + 0.33
N=100 | 0.38 + 0.41 | 0.49 + 0.46 { 0,35 + 0.35 | 0.23 + 0.38
0.28 + 0.38 | 0.36 + 0.40 | 0.27 + 0.32 | 0.21 + 0.38
0.05 + 0.14 {0.07 + 0.17 | 0,08 + 0.17 | 0.03 + 0.08
N=200 | 0.34 + 0.31 |0.43 + 0.33[0.29 + 0.24 [0.14 + 0.12
0.21 + 0.28 |0.27 + 0.29 | 0.18 + 0.23 [0.10 + 0.11

(Each entry shows 'average + deviation'.)

i)
- 1) -
¢ 3
a0+ LR Y
3 R ¢
> |- g I
g [$f
] .o} Y [
220F2 i I
@ | Gt 2
- Vo a i
= L 1 g
oo qeres [&) 2
‘ ey 10 ;‘Ll aad I el 3
e o 5107 2 &4 818"
cx Fig.2 Computation Time of
Fig.l Performance of Algorithm Algorithm 1,2 and 3

1,2 and 3 (CHOICE/%,:N=200) (CROICE/%,)

