i

Information Processing in Japan Vol. 17,1977

Parallel Fault Simulation Techniques for Large
Digital Circuits Including Functional Elements
Akihiko YAMADA®*, Nobuo WAKATSUKI* and Kyouji TOMITA*

ABSTRACT
Parallel fault simulation techniques for functional elements are described in

his paper.
digital circuits consisting of gates, flip-flops, ROMs, RAMs, Content Addressable
Memories and Register Files.

1. INTRODUCTION

Because of the rapid progress of semi-conductor fabrication technology, the
density and complexity of integrated circuits have been remarkably increased. This
tendency will become even stronger in the future. As a result, with this increase,
many functional memory elements such as ROM and RAM are being used in logic circuits
recently. The use of these functional elements has made the test of the logic cir-
cuits more difficult and has made the programs in this field more complicated.

The main purpose of this paper is to introduce simple and convenient parallel
fault simulation techniques of the functional elements, which have been developed for

and used in this fault simulator.

2. PARALLEL EVALUATION TECHNIQUES FOR FUNCTIONAL ELEMENTS

A gate level fault simulator is not efficient to accommodate larger circuits
than those with several thousands gates, because a large storage area is necessary to
store a large number of fault and a fault-free circuits. Furthermore simulation time
for the large circuits will be increased.

It seems that a functional parallel fault simulator with functional models
described in this paper provides great possibilities to fault simulation of large scale

circuits.

This paper first appeared in Japanese in Joho— Shori (Journal of the Information Processing
Society of Japan), Vol. 17, No.7 (1976), pp. 569~576.
* Systems Development Department, Computer Engineering Division Nippon Electric Co., Ltd.

2

Flip-Flops

Many MSIs such as counters and shift registers are expanded to their equivalent
circuit configurations composed of several flip-flops and gates; all kinds of flip-
flops are processed in this fault simulator as the primitive elements having N-inputs
and 2-outputs for simulation efficiency, where N is decided by a type of flip-flop.
This basic concept for flip-flops makes it possible to simulate various functional
register modules made up of some flip-flops.

However, the following several problems must be solved to simulate a flip-flop
as a black-box in parallel.

o PFor an edge triggered flip-flop, the positive edge of the clock pulse given to the
clock pin of the flip-flop must be identified by its evaluation routine in parallel.

o All functions of a flip-flop must be completely converted into a boolean equation
representation to derive the high efficiency of parallel fault simulators.

For an edgé triggered flip-flop, two value areas are reserved. The first value
area is used to represent the current outputs of the flip-flop, Q and §. The second
value area is for examining a positive edge of a clock pulse to be supplied to the
flip~flop. That is, the preceding clock value to the flip-flop is stored in the
second value area when the flip-flop is evaluated by its evaluation routine. Detec-
tion of the positive edge is derived from eq. (1) by simple boolean manipulation using
current clock input value and the proceding clock value already stored in the second
value area.

Cr = Cn + Co-1 (1)
Where Cr = representing positive edge of clock pulse,
Cn = current clock value, Cn-1 = preceding clock value.

Further Cr derived from eq. (1) is used in egqs.(2) through (5), in which
functions of several typical edge triggered flip-flops with asynchronous set and
reset inputs are expressed. Sa and Ra in these equations mean asynchronous set and

reset inputs.

D type flip-flop Q =Sa +Ra + (Cr * D + Cr * Qn) (2)
J-K type flip-flop Q = Sa + Ra {Cr - (X-0n+J-Qn)+Cr - Qn} (3)
R-S type flip-flop Q = Sa + Ra ° {Cr - (S+R - Qn) +Cr - Qn] (4)
T type flip-flop Q = Sa + Ra - (Cr @ Qn) (5)

Parallel Address Decoding Technique

This is a fundamental technique which allows parallel simulation of ROM, RAM, etc.
These functional elements have a built-in address decoder to select the desirable word.
An example of the parallel address decoding technique is shown in Fig. 1. An address
decoder with two inputs and four outputs and its truth table are indicated in Fig. 1
(a). Apparently, the relation between inputs and outputs is based on binary notation
of inputs. A simple parallel evaluation routine is shown in Fig. 1(b) and is quite
acceptable to simulate the address decoder. The routine observes the bits configura-
tion of a variable b. A variable m represents the number of inputs to the decoder.
According to the bits configuration of the variable b. The routine derives boolean
equations as follows:

When b = 00, T} = S, + §;

01, T = 83 - 8§ (6)
10, T4 = 85 + §;

11, T4=52 M Sl

An example of parallel fault simulation for the fault-free address decoder
presented in Fig. 1(a) is shown in Fig. 1(c). Three faults F,, F, and F, propagate
on the inputs of the decoder. G means a fault-free circuit. Substituting S; = 0011
and S, = 0110 into eq. (6}, simulation resultants T; through T,, as shown in Fig. 3,
can be obtained. Of course, this technique is applicable to the parallel simulation

of various decoders and multiplexers often used in logic circuits.

To clarify the address decoding technique, one example is given. Figure 2 is a
simplified evaluation routine of RAM with 2™ words of n bits. As a result of the
address decoding operation, address inputs (Sl—m) are decoded and a mask bits pattern
(A) needed to select a desired word is generated. Every word (Bj,k; kth bit of jth
word) of RAM is examined with A to either write-in or retrieve data.

3. FAULT SIMULATOR AND SIMULATION RESULTS

The parallel fault simulator has been implemented using above mentioned parallel
evaluation technique for functional elements. It employes selective tracing simulation
technique, and maximum 960 fault and fault-free circuits can be simultaneously process-
ed at one path. Functional models for Flip~Flops, ROMs, RAMs, CAMs and Register Files

are available.

SN

—n Pl b—
— »2 F, b— Where Dl ~ D = Data Inputs,
' m i |
! 2 words xn bits . s. ~ 8
[H 1 m = Address Inputs,
n 1
' E = Chip Select Input,
—8 RAM i
i .
S, —1 ADDRESS T, s : VE = Write Enable Input,
- l— Tz H 2 f P, ~ P_ = Data Outputs.
S, DECODER T ' 1 B
2 m— T; ils P !
4 m E v »nP
TRUTH TABLE ? T
5, § T T, T, /* INITIALIZATION */
o o 1 o o © Do j=1T0n
o 1 o 1 o0 © P, =all 0
1 [}] (4] 1 0
END
1 1 o o] o] 1
b=0
(a) 2-inputs and 4-outputs P
decoder and its truth table. v=E .VWE
po j =110 2"
A=alll
m=2
/* ADDRESS DECODING */
b=0
o DK=17T0m
D0 j=1T02
Tj=alll IF k th bit of b =0
Pk=1T0n TmA:A-Sk
IF kth bit of b = 0 EbSEA:AvSk
THEN Tj = T3-Sk .
R /* VRITE AND READ *
ELSE T = Tj S /
DOk=1TOn
END
B, WrA-D, + WeArBy
b=b+1 (bis incremented i kT k 3.k
EXD by one)
(b) Parallel evaluation routine Fy = F + AB,
k i K
for the decoder.
END
G Pl F2 F3 o
3 b=b+1(bis incremented
110 O 1 1 by one).
52 o 1 1 [\] END
T, (r o © o /* OUTPUT JUSTIPICATION */
T, {0 o © 1 r=E. VE
,{0 1 o0 © DO j=1T0n
1‘4 o o 1 o F., =r.F,
3 3
(c) An example of parallel fault
simulation for the decoder. END

Fig. 1 Explanation of perallel Fig. 2 Simplified evaluation routine
address decoding technique for 2™ words x n bits RAM

This fault simulator has been programmed in Assembler and PL/1-like languages.
It runs on an i use NEAC
presently handle a circuit of 3,000 gates. The comparison of this parallel fault
simulator and notable fault simulators is performed in Table 1 using several actual
simulation results.

The simple experiment was carried out for a circuit F which consists of thirty
4x4 Register File elements, control gates and flip-flops. Two simulation models, Fa
and Fb, were made for the circuit to study the efficiency of functional simulation.
The result shows that the efficiency of functional model, Fa, is two times superior to
that of gate model, Fb, in which each Register File element has been expanded to the
equivalent circuit composed of sixteen T type flip-flops and fifty two gates. Compu-

tation time and storage saving are quite remarkable in functional fault simulation.

Table 1 Comparison of this fault simulator and notable fault simulators

Functional [Faulte Vectors Paults Simulation
Circuit | Gates |Flip-Flops | Elements simulated | simulated | detected | CPU time | efficiency =
(No.) No. (No.) (No.) (No.) (%) (sec.) FaultsxVectors
CPU_time
A 604 40] 1492 3024 93 1068 4.22
R 1156 32 0 3471 778 82 705 3.83
C 435 12 1K ROM : 3 1175 2431 90 975 2.93
D 586 32 1K ROM : 3 1646 2160 84 3043 1.17
(1) 4x4 CAM:)
E 446 11 16x4 RAM:9 1428 676 94 840 1.15
a 527 12 4x4 Register 1897 90 572 1.23
F File : 30 372
b 2099 492 4] 8425 98 5340 0.59
G 161 [¢] 16x4 RAM: 30 803 842 92 1524 0.44
(2) H 1003 - (] 155 1734 98 373 0.72
I 1025 48 V] 310 1235 68 534 0.72
(3) J 2476 - 0 2361 16 - 327 0.12
K 6602 - 4] 2147 377 - 510 1.59

(1) The parallel fault simulator described in this paper.
(2) Concurrent fault simulator of GTE on IBM 370/158 with 0.6 megabytes (2]
(3) Deductive fault simulator of BTL on IBM 360/67 with 4 megabytes (1)

REFERENCES

(1] H.Y. Chang, S. G. Chappell, C. H. Elemendorf and L. D. Schmidt: "Comparison of
Parallel and Deductive Fault Simulation Methods" IEEE Transactions on Computers,
November 1974.

[2] D. M. Schuler, E. G. Ulrich, T. E. Baker and S. P. Bryant: "Random Test Generation

using Concurrent Logic Simulator" Proceedings of 12th DA Conference, June 1975.

