A Gate Placement Algorithm for
One-Dimensional Arrays

TeTsuo AsaNO* and KOKICHI TANAKA**

This paper deals with the design procedure of MOS one-dimensional arrays. A one-dimensional array consists
of single-type elementary circuits such as NAND or NOR gates. Gates in an array may be arranged in an
arbitrary order. The purpose of this paper is to find an optimal gate ordering in such a sense that the corre-
sponding chip area is to be smallest. An algorithm presented in this paper searches for an optimal wire ordering
rather than an optimal gate ordering. The corresponding gate ordering can be achieved according to the wire
ordering obtained. The algorithm is sub-optimal in a sense that it reaches an optimal solution if sufficient
storage and execution time are permitted. It has been programmed on the FACOM 230-45/S computer and

has proved successful by experiments.

1. Introduction

In the past few years, large-scale integration (LSI)
technologies have enjoyed a rapid growth, and the
functional density has been greatly improved. This
tendency furthers the development of design methods
of large-scale integration of complex logic functions
on as small a chip area as possible. Several design
methods have been reported to meet this requirement.
The one-dimensional array method has attracted
special interest recently. This method is applicable to
MOS-LSI and bipolar 72L (integrated injection logic).
The one-dimensional array consists of single-type
elementary circuits such as NAND or NOR gates.
These gates are interconnected into the requisite func-
tion. Fig. 1 illustrates various schematics of a NAND
gate. Gates in an array may be arranged in an arbitrary
order. The purpose here is to find an optimal gate
ordering which minimizes the chip area. The optimality
does not include minimization of the total wire length,
which is regarded as of minor importance nowadays.

This paper presents a heuristic algorithm for finding
a suboptimal ordering of gates. For a large-sized pro-
blem, it seems to be difficult to obtain an optimal solu-
tion except by exhaustive searching. H. Kawanishi
et al. [1] proposed a method based upon initial ordering
and iterative improvement. Their method may be
sufficient for practical use, but the only drawback of
their method is that the result heavily depends upon
the initial ordering. The algorithm to be presented
in this paper is sub-optimal in a sense that it reaches an
optimal solution if sufficient storage and execution time
are permitted. The algorithm has been programmed
on the FACOM 230-45/S computer and has proved

*Faculty of Engineering, Osaka Electro-communication Univer-
sity, Neyagawa, Osaka 572, Japan.

**Faculty of Engineering Science, Osaka University, Toyonaka,
Osaka 560, Japan.

Journal of Information Processing, Vol. 1, No. 1, 1978

A
z vDD
B vGG IH
c A > 1
Ny SN
Z
(a) Logic Schematic.
B— 1
I'T
) C — 1
A 0 m
H— A
B 2l
c rn (b) Circuit Schematic.
L™

(c) Simplified layout

schematic.

Fig. 1 Elementary circuit for one-dimensional array. (a) Logic
schematic. (b) Circuit schematic. (c) Simplified layout
schematic.

successful by experiments with the same examples as
those used in [1].

2. Definition and Notations

This paper deals with a one-dimensional array as
shown in Fig. 2. The chip area varies with the ordering
of the gates. For example, the chip area of Fig. 3 is
smaller than that of Fig. 2. The purpose is to find
an optimal ordering of gates to achieve the minimum
chip area.

In order to describe the problem, some terminologies
and notations are defined below.

(1) B={b,, b,,...,b,} is a set of gates.

2 W={w,,w,,...,w,} is a set of wires. In parti-

b
v — —
o) 0
1} {H- 1
2
V3 {} 4
s -H— "4
Ys {l {} b3
__G w7
L J —J 1 SR —d

Fig. 2 Example of one-dimensional array.

b, b b by by
o Ig] "]
0- s 4 [H— Y6
V3 { 1
v —H] {} Y4
L] i L | L] _ Y7

Fig. 3 Improved layout pattern of Fig. 2.

cular, a set of those wires which extend leftwards (right-
wards) is denoted as W, (Wy). Complementary sets of
W, and Wy are written as W, and Wy, respectively.
Then, the set W can be decomposed into four mutually
disjoint subsets, W, N Wy, W, Wg, W, N Wg and
W, n Wy. For example, the set of the wires of Fig. 2
is decomposed as follows: W, N Wge={w,, w;, ws},
Wy We={w,, we}, W 0 Wr={w,} and W, n W=
{w,}.

(3) W(b) is a set of those wires, terminals of which
are on the gate b.

(4) B(w) is a set of those gates which are included
by the wire w.

Sy PB)={a,a,...,a,} (p=n!) is a set of all
gate orderings. For a gate ordering a=(b,,,b,,,...,b,),
let a(b,)=k (k=1,2,...,n). For example, Fig. 3
corresponds to the gate ordering (b,, by, bs, b3, by).

(6) Given a gate ordering o, the height of a gate
b is denoted as H(a; b). It is defined as the number of
those wires which connect or run through the gate b.
Formally, H(x; b) was defined as follows:

H(a; b)=#{we W|be B(w) or 3b, b, € B(w)
such that a(b)) <a(d) <a(b))},

where #S denotes the number of elements of the set S.
Here notice that if a gate ordering is fixed, then the
corresponding chip area is determined by the maximum
height.

[Problem] Given a set B of gates and a set W of wires,
find a gate ordering a so as to minimize the maximum

T. AsaNo and K. TANAKA

height H(x) defined by
H(x)=max {H(x; b) | be B}.

Evidently, the domain of the above problem is too
large to be directly solved. H. Kawanishi et al. used a
notion of clusters of gates. We take a different approach
toward this problem. In this paper, a gate ordering is
determined indirectly. Our algorithm searches for an
optimal “wire” ordering. Then, the corresponding gate
ordering is achieved according to the wire ordering
obtained.

We define two types of wire orderings, right edge
orderings and left edge orderings. A right edge ordering
is a sequence of wires (w;,, w;,, .. .) where these wires
are arranged in order of increasing the x-coordinates
of their right edges. A left edge ordering arranges wires
in order of decreasing the x-coordinates of their left
edges. For a fixed gate ordering o, x-coordinates of
left edge and right edge of a wire w; are denoted as
x (a; w;) and xg(x; w;), respectively. Formally they
were defined by

x5 w)= 0 ifw,eW,
L PV \min {«(b) | b€ B(w;)} otherwise,
and
Xels w)= n+1 if w,e Wy,
RE U™ \max {a(b) | b € B(w,)} otherwise.

Then, a right edge ordering is defined as a sequence
of wires (w;,, w,, . .., w;)) for which there exists a gate
ordering such that xg(a; w;)<xgloe; w,)< - Sxp
(a; wy,) and {w,, w,,, . .., w;} =Wg. A left edge ordering
is similarly defined. Here note that a right edge ordering
ignores those wires belonging to Wy since for any wire
w; xg(a'; w)=n+1 holds for any gate ordering o'.
The discussion below is restricted to a right edge order-
ing.

In the rest of this chapter we consider the relation-
ship between gate orderings and right edge orderings.
First, is an arbitrary sequence of wires from Wy sig-
nificant as a right edge ordering? Evidently, the answer
is “No”. A sequence of wires (w;,,w,,...,w,) is
significant as a right edge ordering only if there exists
a gate ordering a for which xg(o; w;) S xgp(a; w,)< - -
<xg(x; w;) holds. Then, we say that the gate ordering
realizes the right edge ordering «. For the set of the
wires of Fig. 2, for example, Wg={w;, w;, ws, ws}
and hence 4! sequences of wires may be considered.
Among them, six sequences (w;, w,, w3, ws), (W, ws,
W2, w5)$ (wl’ W3, Ws, w2)’ (WZ’ Wi, W3, WS), (WZ! W3, Wy, Ws)
and (w,, w,, ws, w,) are not right edge orderings. On
the other hand, 5! gate orderings are all significant.
Here a delicate problem confronts us. Is there any
proper way to see if a given sequence is significant as
a right edge ordering? Perhaps there is no way to do it
except by exhaustive searching. In order to avoid the
difficulty, we put restrictions on gate orderings.

[Definition 1] A right edge ordering (w,,, w,,, . .., w,)

A Gate Placement Algorithm for One-Dimensional Arrays

is “compact” if and only if
B(w,)$ B(w,)
holds for any k where k> 1, and

B(w,)—[U5=1 Bw,)I» B(w,) —[)}=1 B(w,)]
holds for any k and k' where 2<k<s—1 and k’'>k.
Here, A B means that a set A does not properly include
a set B.

(Definition 2] Let a be a gate ordering and (w,,, w,,, . . .,
w,) be a right edge ordering realized by «. Then, «
is compact with respect to the right edge ordering if and
only if the right edge ordering is compact and the
equation

xp(o; wo)=#[Uj=1 Bw,)]
holds for any k where 1 <k <s.

A compact right edge ordering (w,,w,, ..., w,)
determines its corresponding compact gate ordering as
follows: First place, the gates of w,, one by one; second
place, those gates of w,, which are not already fixed,
i.e., those belonging to B(w,)—B(w,); third place,
those gates belonging to B(w,)—[J7_, B(w,)], etc.

It is worthy of our notice that for the set of wires of
Fig. 2 there exist only five compact right edge orderings.
They are (w3, ws, wy, W), (s, Wy, Wy, w3), (Ws, wy, ws,
Wz)a (Ws’ Was Wy, WS), and (Ws’ Wi, Wy, Wz)-

Fortunately, the compactness condition preserves a
way (or a path) to an optimal solution.

[Lemma 1] Let a be an arbitrary gate ordering. Then,
at least one of right edge orderings which are realized
by a is compact.

[Theorem 2] At least one of compact gate orderings is
optimal.

3. Search Tree

In this chapter we define a search tree for finding an
optimal wire ordering which corresponds to an optimal
gate ordering. Two types of search trees are considered:
One for right edge orderings and the other for left edge
orderings. The former tree is called a right search tree
and the latter a left search tree. In the following discus-
sion, we deal only with the right search tree.

Each node of the right search tree corresponds to a
subsequence of a right edge ordering. The root node
of the tree corresponds to the null sequence. At the
first level of the tree, first elements of right edge order-
ings are chosen; and at the second level, the second
elements are chosen, and so forth. When all of the
elements of Wy are chosen, right edge orderings are
obtained at the bottom of the tree.

The root node, denoted by n8, corresponds to the
state where no decision is made, or no gate is fixed.
At this state it is only known that the maximum height
is not less than # W;, the number of those wires which
extend leftwards. At the first level of the tree, first

49

elements of right edge orderings are chosen. Suppose
that a wire w; were selected. Then, the node is charac-
terized by the sequence (w;) of length one. This means
that the gates of w,, B(w,), should be placed one by one
from the left side. Suppose that the gates b;, b,,, ...,
b, were fixed in this order. Then, those wires which
extend rightwards through the gate b, are other elements
of W, than w; and those wires which connect with these
gates. The number of such wires determines the height
of the most recently fixed gate 5,. In the following
formal definition of the right search tree, each node,
denoted by mg, is characterized by three quantities,
Ai(ng), t(ng), and h(mg). A sequence of wires mi(ng)
corresponds to the path from the root node to this node
mg. A set of those wires is 7(ng) which extend rightwards
through the most recently fixed gate. The maximum
height is denoted by h(mg) within the extent of the gates
already fixed.

[Definition 3] A node nz of a right search tree is of
the form as mp=mi(ng) t(ng). For a sequence of wires
m(ng), m(ng) is a set representation of mi(ng). Here,
m(ng) must be a subset of Wy. Then, #(rny) is defined as
follows:

Hng)={w;€ W| (w; ¢ m(ng)) and
(w, e W, or A(w)) N m(mg) #0)},

where A(w)) is a set of those wires which connect with
the same gate as w;. Formally, A(w)) is defined by

Aw)={w;e W| B(w)) n B(w;)50}.

[Definition 4] The root node is a node n2 for which
ni(ng) is a null sequence. A terminal node is a node
n for which m(n})=Wh.

[Definition 5] Let nz be a non-terminal node of a right
search tree and let w,e (W—m(ng)) » Wg. Then, we
say that a node ny for which #i(ny) is defined as (/i(ng),
w,) is a successor of the node n; with respect to w,, or
that the node rn; is expanded from my with respect to
w,. Also, the node my is called the parent node of nj.

For a node 7y, which is a successor of ng with respect
to w,, t(ng) is determined as follows:

Hrr)=[t(ng) —{w.}] U A(w,) N [W—m(mg)].

As is mentioned in the previous chapter, the goal
in this paper is to find an optimal, compact right edge
ordering. For this purpose, the right search tree should
be constructed so that every expanded terminal node
corresponds to a compact right edge ordering. In the
following, node expansions are restricted to those which
satisfy the condition described in Definition 1, which
are called safe expansions.

[Definition 6] For a node n, of a right search tree,
B(ng) and W(ny) are defined by

B(ng)=B— B(m(my)),
where B(m(ng)) = vemxn) B(W), and

S0

W(ng)=W—m(ng).

In other words, B(rg) is a set of those gates which
are not already fixed.

[Definition 7] Let n; be a node of a right search tree
which is not a terminal node. Then, an expansion from
nz with respect to w, is safe if, and only if, (1) w, e
W(ng) N Wg and (2) for any w, where w,€ W(ng) N W,
B(w,) n B(ng)$ B(w,) B(mp)

holds.

[Definition 8] A safely expanded node is a node which
is obtained by iterative applications of safe expansions.

[Theorem 3] Safely expanded terminal nodes produce
compact right edge orderings.
Fig. 4 shows the right search tree for the set of the

4
TR

TR o= Ofwys vy, wg, vy}

Te = (w3){wl, Vs Voo w7"

Te = (igs we{wys vy, wgs Wy

TR = (g wss wfuy, vy W, v
T = (ugs W Wy wpwy, wes vy
T = olwp.wy, vy vy}

TI'R" (w55 w) vy, Was Wy Vs w.l}
T(z- (Wg» ¥y, wz){w3, Wy Vg Wg}
71';- (ws, Wi Wy w3)lw4, Vs w7}
7(;' CA w3){w2, Wy Vs w7}
o= (uss wys wys wtwy, wes
Tg = (s wp vy, vy, vy v}

T = Wss wps w{w3s Wy wg, w3}
= gy wys s W {,s v vy}
T = (wss wpfwy, vy v w;}

T = g vy v vy i vgo Wik
= 5s w3y vy, Wl W w7

Fig. 4 Right search tree for the set of wires of Fig. 2.

T. Asano and K. TANAKA

wires of Fig. 2 where every node is safely expanded.
Note that the tree contains only five terminal nodes.

Finally, we shall evaluate h(ng) for each node mg
of a right search tree. As is mentioned earlier, A(my)
is the maximum height within the extent of already
fixed gates, B(m(ng)), which have been placed in order
according to the right edge ordering mi(ny). It is easily
seen that the value A(ng) is associated with the number of
those wires which extend rightwards through the most
recently fixed gate.

[Definition 9] For the root node n% of a right search
tree, A(nQ) is defined by A(n2)= # Wy, and for any other
node mg,

h(rg)=max (1+ #t(ng), h(ng)),
where 7y is the parent node of ny.

[Theorem 4] Let n} be a safely expanded terminal node
in a right search tree. Then, for a compact gate ordering
a which realizes the right edge ordering mi(n}), the
equality A(nh)= H(x) holds.

4. Admissible Limitation in a Node Expansion Process

In the previous chapter, we have claimed that nodes
should be safely expanded. This limitation was suc-
cessful in reducing the size of the search tree to some
extent, but there still remains too many nodes in the
tree. In this chapter, we attempt to reduce the search
space by placing some admissible limitations on the
node expansion process used.

Constraint 1: Let 7z be a node of a right search tree.
Let n% be a successor of n, with respect to w, and
nt a successor of m, with respect to w,. Then, eliminate
the node 7% from the right search tree if {w,} U t(n%) &
{w,} L 1(n%) holds. In this case, we say that the node
n% dominates over 1% with respect to Constraint 1.

Constraint 1, for example, applies to the node nj
and 7' in Fig. 4 and then the node n§ is eliminated.
Constraint 2: Let n% and n% be nodes of a right search
tree. Then, eliminate the node n% if (1) m(n%)=m(nk)
and (2) h(ng) < h(ny).

Two nodes n2 and nk* dominate over each other
with respect to Constraint 2 since h(n2)=h(n}*). Hence,
we may eliminate either of them.

The following constraint is closely related to the node
expansion procedure described later.

Constraint 3: Let 7% and n% be nodes of a right search
tree. Then, eliminate the node n% if (1) m(n%)Rm(nk)
and #m(nR)=#m(rR)+1, (2) #H(nR)<#1(np), ()
h(n%) < h(nk), and (4) nb is not the parent node of n&.

For example, suppose that n}, n}, and n2 were ex-
panded in this order. Then, we may eliminate the node
73 since 72 dominates over n3 with respect to Constraint
3.

All these constraints can be verified to be admissible.

A Gate Placement Algorithm for One-Dimensional Arrays

Here, by an admissible constraint, we mean that the
node-eliminating strategy based upon that constraint
does not destroy all of the paths to optimal solutions.

5. Search Algorithm and Experimental Results

This chapter presents an algorithm for finding an
optimal gate ordering. The algorithm is based upon
two procedures RTREE and LTREE. The procedure
RTREE searches a right search tree to find an optimal
right edge ordering, and LTREE searches a left search
tree. These procedures are heuristically guided to expand
the fewest possible nodes in searching for an optimal
wire ordering.

The procedure RTREE (W,, N,, Fg, n%) is described
in the following. Two parameters W, and N, are used
there to limit the search space. The cost function Fy
evaluates expanded nodes so that the search should be
effectively guided. Its concrete definition is described
later. The output of the procedure, ng, is the terminal
node selected by the procedure.

[Procedure RTREE (W,, Ny, Fg, n})]

R1: NENSET:={rn3}.

(The node nQ is the root of the right search tree.)

R2: Select the node n% among NENSET whose value
of Fy is smallest. Eliminate the node n% from
NENSET.

R3: 1If the selected node nk is a terminal node, then
set nh:=mnk and stop.

R4: h*:=h(nk).

RS: WSET:=Wx—m(nk).

R6: Select a wire w; among WSET, and set WSET: =
WSET —{w;}.

R7: Expand the node n} from n} with respect to w,.

R8: If h(n}{) 2 W, then go to R15.

R9: If the expansion of n} from n% is not safe, then
go to R15.

R10: If h(m}{)=h*, then set nh:=nY and stop.

R11: If NENSET contains any nodes which are domi-
nated over by ni{ with respect to any constraint,
then eliminate them.

R12: If any node in NENSET dominates over ¥,
then go to R15.

R13: If #NENSET < N, then let NENSET: =NENSET
v {ni{} and go to R15.

R14: Otherwise, find the node n% in NENSET whose
value of Fy is largest. If Fy(ni)<Fg(n%), then
set NENSET:=(NENSET — {n%}) u {n%}.

R15: If WSET is not empty, then go to R6; otherwise,
go to R16.

R16: If NENSET is not empty, then go to R2; other-
wise, set ng:=dummy and h(n}):= + 0o and stop.
END

In the above procedure the cost function, Fg plays
an important role. The efficiency of the procedure
greatly depends upon the goodness of the evaluation
by Fg. So, Fyp should be defined in such a way that it

51

effectively guides the search for an optimal solution.
The most desirable node to be selected is a node =%
such as; (1) the value of A(n%) is smallest; (2) n is at
the deepest level; in other words, the value #m(nk)
is largest; (3) #t(nk) is small; and (4) #[t(nh) N Wi]
is small (note that for any decendent =} of n%, t(n})=2
[t(n%) » W] holds). Considering the above-mentioned
things, we define the function Fy as follows:

Fr(rp)=c1-h(ng)—c,- #m(np)+cs- #t(np)
+eq- #[Hmh) A Wel.

Here, ¢, »c,»c3»cq (by “c;>»c¢,” we mean that
¢, is larger enough than c,).

The other procedure LTREE (W, N,, F,, n}) to
search a left search tree is constructed in much the same
way.

Using these two procedures, the search algorithm
is presented in the following for finding an optimal
gate ordering.

[Search Algorithm]

Si: Call RTREE (o, 1, Fg, nh).

S2: Call LTREE (A(n}), 1, F,, n}).

S3: Let W,=min (h(n}), h(n})), let N, be an ap-
propriate value and then call RTREE (W,, N,
Fg, nd).

S4: Let Wy=min (h(n}), h(n}), h(n2)), and call LTREE
(We, Ny, Fy,).

S5: Select the one among n3}, nl, nZ, nZ whose value
of h is smallest. According to the selected wire
ordering, determine the gate ordering.

END Algorithm

The search algorithm may be divided into three parts.
The first part (the steps S1 and S2) makes rough searches.
In the step S1, exactly one path is traced in the right
search tree to the terminal node n}. In the following step
S2, also only one path is traced in the left search tree.
The search is continued as long as it expands the node
whose value of A is smaller than that of nj. On the
other hand, the second part (the steps S3 and S4) makes
strict searches. It should be noticed that some sort of
back-tracking is permitted there. The parameter N,
indicates the extent of the search space. If N, is large
enough, then it is possible to guarantee the optimality
of the solution obtained. The last part (the step S5)
determines the gate ordering according to the solution.

The authors have programmed the search algorithm
with some modifications and experimented it with the
same samples as those used in [1]. Table 1 illustrates
the results. The authors employed the FACOM 230-
45/S computer and Kawanishi et al. used the NEAC
2200/500 computer.

The authors’ program does not ascertain the safeness
of expansions. This is because it consumes too much
time and also requires additional storage. Thus, the
output of the program may not be a compact wire
ordering. But the maximum height achieved cannot be
larger than the real maximum height.

52

T. Asano and K. TANAKA

Table 1 Experimental results.

Example Number of Number of Results in (1) Authors’ Results
No. Gates,n. Wires, m. piy Tose) H* Ti(ec) h kb hy he t. 1, 13 L

Ex. 4 53 55 17 330 17 1.7 19 17 — 1.8 2.1 14 24
Ex. § 80 81 23 1028 21 23.1 2 — 2 4.8 1.9 10.7 57
Ex. 6 48 48 i6 193 15 10.3 19 18 15 — 21 1.8 3.7 2.7
Ex.7 48 48 13 236 12 54 13 — 12 — 14 0.3 2.6 1.1
Ex. 8 48 48 13 206 12 6.9 14 — 12 — 15 1.2 2.7 1.5
Ex. 9 48 52 19 348 18 7.3 19 — 18 —~— 23 0.4 3.5 1.1
Ex. 10 48 50 17 233 16 59 16 — — — 21 0.3 2.5 1.0
Ex. 11 48 48 10 205 9 2.8 9 — — 1.1 0.2 1.3 0.2
Ex. 12 48 48 21 340 21 8.1 21 — — — 26 1.7 1.0 2.8
Ex. 13 48 48 11 251 11 38 11 — — — 14 0.9 04 1.1
Ex. 14 48 49 16 273 15 4.7 18 15 — — 19 2.0 0.5 0.3

In the above table, &, and ¢, are the value of 4 and the execution time, respectively, at the step Si of the algorithm; and H* is the minimum

value of Ay, ..., he, and TE is the sum of ¢4, . .

., ts. The symbol “—" means that the searching was interrupted. All these experiments were

implemented with N=5. They were also done with N=10 and N=20, but the 4 values were the same as the above results.

6. Conclusions

This paper has discussed the problem of determining
the optimal gate ordering in a one-dimensional array
in such a sense that the corresponding chip area is
smallest. For a real, large-scale problem the domain
of the problem is too large to solve it directly. For this
reason, the purpose of this paper has been on reducing
the problem domain. This purpose was achieved in
two ways. First, we introduced a notion of a “compact”
wire ordering. This succeeded in reducing the problem
domain to a large extent. Second, the search strategy

was devised so as to expand the fewest possible nodes
in the search tree.

Acknowledgement

The authors wish to thank Mr. H. Kawanishi of
the Nippon Electric Co., Ltd. for providing them with
samples. Thanks are also due to Dr. T. Kitahashi of
Professor Tanaka’s Laboratory for valuable discussion.

References

1. YosHizAwA, H., KawanisHi, H. AND KaNI, K. A Heuristic
Procedure for Ordering MOS Arrays. Proc. 12th Design Automa-
tion Conference, 1975, pp. 384-393.

