Effect of Partially Preloaded Program on
Paged Virtual Memory
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A Partially Pre-Loaded Program (PPLP) approach is introduced in order to correct the incompleteness of
the Page Replacement Algorithm (PRA) in paged virtual memory systems. In the PPLP approach, it is first
necessary to determine the resident page set which may reduce the number of page faults. Based on an
analysis of PPLP effects, four practical resident page selection algorithms are proposed. Address traces are
used in PPLP experiments. The results are discussed with regard to the decrement of the page faults as well
as the relation between program behavior and the selection algorithm.

1. Introduction

Many paged virtual memory computer systems have
been developed to date. Most of them employ ‘demand-
paged memory management’ in order to secure high level
memory utilization. In such systems, the program’s
memory reference behavior has a great influence on
computer performance as described in [1-2]. Accord-
ingly, the operating system must always predict the
program’s memory reference behavior, and place pages
which will be referred to in the near future in main
memory to prevent page fault occurences. This function
is known as ‘Page Replacement Algorithm’ (PRA) and
is vital to paged virtual memory systems.

In general, an operating system should be developed
assuming the hardware configuration and its application
fields. Consequently, the system designers should employ
a PRA which best suits their application. However, it is
difficult for the PRA to adequately predict the program’s
memory reference behaviors. As a result, the PRA
usually has some degree of prediction incompleteness in
[3-4]. This PRA incompleteness for the frequently used
programs such as compilers, some parts of supervisors,
access methods and on-line programs causes great
losses over long periods. For this reason, it is necessary
to devise a way to correct PRA incompleteness.

The Partially Pre-Loaded Program (PPLP) approach
presented in this paper, which makes a part of the
program or data reside permanently in the main memory,
is effective in correcting PRA incompleteness.

E. Gelenbe presented the effectiveness of the random
partially preloaded page replacement algorithm in [5),
and introduced the formula of page fault ratio for
W. F. King’s program model in [6] in which the refer-
enced pages appear independently and obey the identical
distribution. E. Gelenbe employed the random PRA in
[3] to pageable area (An area of virtual storage whose
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addresses are not identical to real address), and he named
this algorithm as Random Partially Preloaded (RPPL)
PRA. In this situation, he found that the optimum
resident page set contains m-1 pages whose probability
of being referred is highest; where as, the main memory
contains m pages.

However, we feel that the program’s page reference
on a real computer is not the independent, identically
distributed model. J. R. Spirn and P. J. Denning were of
the same opinion in [7], from the viewpoint of the
program locality. Moreover, LRU (Least Recently Used)
or Working Set PRA are widely adopted rather than
Random or FIFO (First In First Out) PRA, especially
in commercial computers.

In this paper, it is not necessary to assume a specified
page reference model like the one used by W. F. King [6]
for analysis of the PPLP approach. Moreover, the well-
known LRU PRA is adopted. Thus, we aim to; (a)
analyze the decrement of page fault number by PPLP,
(b) propose the selection algorithms for the resident
page set and (c) evaluate each selection algorithm. From
the above considerations, we can find a resident page set
which corrects the incompleteness of LRU PRA and
reduces the number of page faults.

2. Analysis of Partially Pre-Loaded Program

2.1 Stack Processing

In the paged memory system, program behavior can be
regarded as a page reference string, which is a sequence,
w=ryry, ...r., where reN, t>1, and i=r, means that
page i is referenced at the z-th reference; and a set of
pages referred to by a program denote N={1,2, . . . ,n}.

Stack processing is an efficient technique for PRA
evaluation, especially stack algorithms such as Least
Recently Used (LRU), Least Frequently Used and
optimal PRA reported in [8]. Therefore, stack processing
shall be applied in PPLP analysis. The stack model can
be described as follows: The top of the stack is current
reference, second position is the next most recently
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referred page, etc. When the page in stack position k is
referenced, it is moved to the top; and all pages which
were in position 1,2, ..., and k-1 are pushed down one
position. The stack distance of page x at the ¢-th reference
is denoted by d(x)=k. If page x has not been referenced,
distance d,(x) is set at infinity. Therefore, it is set in the
first position and all pages are pushed one position.

If d(x)>m, a page fault occurs; and the page which
was in position m is moved from the main memory to
the secondary storage. That is the LRU PRA.

2.2 Optimal One Page for PPLP

In this section, consideration is given to what page
will give the maximum effect if only one page is main-
tained in the main memory. To find the page, we shall
define the number of page faults caused by page xe N.
The page fault function for page x at the t-th reference
in w is defined as;

1 if r,=x and d(x)>m,

A(x, m)= 1
o, m) {0 otherwise. M
Thus, the total number of page faults D(x, m) caused by
page x can be given by,

leo|
D(x, m)= ;Z,l A(x, m), ¥))

If page x is always retained in the memory, the page
fault number seems to decrease D(x, m). However, the
pageable memory area loses one page; therefore, page
ye N—{x} may cause page faults affected by the resident
page x to occur.

Let us consider how many page faults will occur by
ye N—{x} if page x is placed in the memory. Let page
ye N—{x} be referred at the z-th reference in w, and the
position of page x in the stack be d(x). If the distance
d(x) is less than or equal to m, page x does not affect
page y. However, if d(x)>m and d,(y)=m, page y causes
a page fault because one page of pageable area is lost.
Therefore,

1 ifr,=y, d(y)=m and d(x)>m,

A(x,y, m)= 3
%y, m) {0 otherwise, @

expresses the page fault increment affected by resident
page x. The total increment is obtained from eq. (3):

lo]
1,m)= % ¥ Alx,y,m). @
yeN—(x} t=1
Due to egs. (2) and (4), the total decrement of page
faults according to resident page x is given by,
E(x7 m)=D(x’ m)_l(x’ m) (5)

Therefore, by using eq. (5), the optimal page x which
resides in the memory and gives the maximum decrement
of page faults, can be found.

2.3 Effect of the Resident Page Set

The previous arguments are generalized in this section.
Let R denote the resident page set, where Rc N and

93

0<|Rj<m-—1, and consider the decrement number of
page faults. If page set R is always maintained in the
memory, the number of page faults caused by page
XxeR is given by,

D(R, m)= ¥, D(x, m). 0)

xeR

On the other hand, the number of pages for the page-
able area is m—|R|. This is expected to increase page
faults caused by page ye {N— R} as described in the
previous section. Therefore, stack status when page
ye{N—R} is referred at the t-th reference in w and its
stack distance d,(y)=i are considered. Let d(r) be the
stack distance of page r e R in the stack. In this case, there
are three stack conditions depending on d(r) and d(y).
The three stack conditions are shown in Fig. 1.

(a) Case 1: d(r)<d(y)

Page y is not affected by page r € R whether page set

R is placed in the memory or not.
(b) Case 2: d(r)>d(»)
All stack distances of page r € R are greater than d,());
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Fig. 1 The negative effect of resident page set R on page refer-
ence y.
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thus, page set R has a great influence on the page refer-
ence y. If d(y)<m—|R| or d(y)>m, page y is not
affected. However, if d(y) satisfies m—|R|<d,(y)<sm,
page y is affected by R and causes a page fault. Memory
utilization deteriorates if the page in lower positions of
the stack are permitted to reside.

(c) Case 3: Stack distances d(r) are greater or less than
d(y). That is, pages in R are split by means of d,(y) in
the stack, as illustrated in Fig. 1. The condition R=
R1UR2 contains the above two cases; thus, case 1 and
case 2 results can be used. It is evident that R1 is the same
as case 1, because d(r,)<d,(y) for r, € R1. On the other
hand, R2 affects reference y, if d,(y) satisfies

m—|R2|<d(y)<m @

for r, € R2, where d(r,)>d(y).
Case 3 is the most general; therefore, the page fault
event caused by the resident page set R is defined as:

1 ifr,=y,m—|R2|<d(y)<m,

A(R,y, m)= 8
AR, 3, m) {0 otherwise. ®

Using eq. (8), the total number of page faults caused by
R for ye {N— R} is given by,

o]
I(R, y, m)= 2‘1 AR, y, m). ®
Thus,
IR,m)= Y IR, y,m). (10)
ye{N — R}

This is the sum of page faults increment caused by R for
all ye {N—R}.

Equations (6) and (10) make it possible to derive the
effect of page faults decrement E(R, m) caused by resi-
dent page set R. Thus

E(R, m)=D(R, m)—I(R, m)
=Y D(x,m)— mz;m I(R, y,m). (11)

xeR
Our aim is to find the page set R which makes eq. (11)
maximum.

Let us consider eq. (11) terms. The first term D(R, m)
is a monotonously increasing function with respect to
|R]. If we select m—1 pages whose D(x, m) in eq. (2) is
highest, the sum of D(x, m) takes the maximum value.
On the other hand, the second term is the number of
page faults which is increased by resident page set R.
Evidently, I(R, m)=0 if |R] =0. If the amount of resident
pages is increased, stack status will become case 2 or
case 3 in Fig. 1. And, stack distance d,(y) will come to
have values which satisfy eq. (7). Thus, the second item
in eq. (11) is a monotonously increasing function with
respect to |R|.

From the above considerations, the number of page
faults decrement E(R, m) is the difference of monoto-
nously increasing functions. It depends on the reference
string and resident page set R.
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3. Page Selection Algorithms for PPLP

3.1 Consideration of Optimal Resident Page Set R

The derived value E(R, m) expresses the effect of
resident page set R. This value is the difference between
D(R, m) and I(R, m), which are closely connected to the
page reference string and resident page set R. A page
reference string is peculiar to the program; therefore, if
the optimal resident page set R, is being sought, it is

m-1
necessary to investigate Y (;') combination, where
r=1
|R|=r. That is, the number of ways of selecting r of n
distinct pages is (':) For example, if n=10 and m=35. it

is necessary to calculate E(R, m) 386 times to search R,,.
This involves an enormous amount of computation.
For this reason, selection of R, is not practical. This
presents the problem of proposing feasible selecting
methods.

3.2 Stepwise Selection (SW) Method

Pages are successively selected as a resident set R=
{xy, X3, ...y Xp-(}. The k-th page gives the maximum
page faults decrement when the memory pageism—k+1,
and a page string does not contain {x, x5, ..., X_}.
That is, x, satisfies E(x,, m—k+1)=max E(x, m—k+1)
in eq. (5). This approach is called the ‘SW method’.

The cumulative decrement of page faults when k&
pages are placed in the memory is defined as:

E(k)= ):“, E(x;, m—i+1). (12)
i=1

Let r, be the number of pages which makes eq. (12)
maximum. Thus, Ro(SW)={x,, x;,...,x,} is the
optimal resident page set in the SW method. Notice that
PPLP is not useful if E(r,) is negative.

3.3 Working Set (WS) Method

In LRU PRA, the order of page reference is reflected
in page replacement instead of time history. Therefore,
page faults will occur frequently in programs which
contain a large frequently used loop L, and which also
contain a subroutine that refers many pages in a short
time after execution of the loop L and return to the loop
L.

Consequently, it is considered important in LRU
PRA to supply information about the time history of a
page reference. In order to measure the time history of
the reference for each page over w, the existent ratio in
the working set W(t, T) is sought. So, the existent ratio
in W(z, T) for a loop L must be high. Therefore, it is felt
that a resident loop L will decrease page fault occurences.

Let w=ryry ..., r. be a page reference string of
length k< oo, where the index of the references means
instruction steps. Define the case where page x; is in the
working set W(¢, T) as:
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1 if x;=r, and xeW(t, T),

0 otherwise.

Ar(xb n= {

The working set W(¢, T) at time ¢, for T>1, is defined
as the set of distinct pages referenced in the interval
[t—T+1,t]for T<t, or [1, t] for T>t as defined in [9]
by P. J. Denning. This is called T window size. Thus,
the existent ratio of x; in W(z, T) over w is given by,
1 lof
e()= ol & At(x;, T). (13)

A resident page set R(WS) may be found by select-
ing j pages according to decreasing e,(7") in eq. (13).
This page selection method is called the ‘WS method’.
The optimal resident page set Ry(WS) makes E(R(WS),
m) maximum.

To retain the page set R{WS) constantly in memory
means that there are many instances of case 1 rather than
case 2 or case 3 in Fig. 1. Consequently, it is felt that
page faults of nonresident page ye {N— R} affected by
R(WS) are not numerous. Further, if the stack status
temporarily takes case 2 or case 3 in Fig. 1, useless page
in/out from/to a secondary storage can be prevented.
This is expected to reduce page faults because pages in
R(WS) will be referred to in the near future with high
probability. In the sequel, the WS method is very useful
for a program whose time variant working set size | W(z,
T)| is large.

3.4 Page Reference Frequency (FR) Method

Let f; be the frequency of references for a page i over
a page reference string. Resident page set R;(FR) con-
tains j pages according to decreasing f;. By calculating
E(R{(FR), m) where 1<j<m-—1, it is possible to find
the optimal resident page set R (FR) that makes
E(R/(FR), m) maximum.

It is presumed that the pages whose reference fre-
quency are high have a high existent ratio in W(t, T)
and reside in a higher part of the stack.

3.5 Sum of Stack Distance (SD) Method

If the stack distance d,(x) of page x at the s-th refer-
ence is larger than memory size m, a page fault occurs.
Thus, the sum of the stack distances for each page seems
to have the potential for page fault occurence. Resident
page set Ry(SD) contains j pages according to the
decreasing sum of stack distances.

This method aims to maximize the first term in eq.
(11), but does not consider the second term.

4. Experimental Results and Evaluations

4.1 Program Behavior Analysis

Data traced on a real, running system have been used
in an experimental study of PPLP approach, with the
following objectives: (a) to confirm the effect of page
fault decrement in PPLP approach; (b) to evaluate four
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Table 1 Summary of the programs.

Name A B

Size (number of pages*) 27 30
Number of instructions 1,350,487 1,884,150
Length of page string 58,783 159,160

*page=4,096 bytes

algorithms which are proposed in the previous section;
(c) to know the relationship between program behavior
and resident page selection algorithm.

The trace data contain instruction and operand ad-
dresses faithfully. Therefore, the page reference string
can be obtained from the trace data. It is assumed that
a page size is 4,096 bytes. Two programs have been used
in the experiments. The main characteristics of two
programs are summarized in Table 1.

Page reference frequency f;, existent ratio e,(7) in
W(t, T),and the sum of the stack distance were examined
for each page from the page string. From these results,
resident page sets were made, R(WS), R{(SW), R(FR),
R{(SD) where 1 <j<m—1; and the decrement number
of page faults were calculated by using the LRU simu-
lator. Through the ‘SW method’, a program was de-
veloped to automatically generate resident page set
R{(SW) and calculate E(R{SW), m) in eq. (11).

4.2 Comparison of Each Selection Algorithm
(i) Measurement of PPLP
By using eq. (11), the number of page fault occurences
is determined. Then,
F(R, m)= Z D(x, m)— E(R, m)

xeR

= Y {D(x,m)+I(R,x,m}. (14)

xe{N—- R}
Let F(0, m) be the number of page faults where r=0.
Define the effect of PPLP as:
F(0, m)
FR, m) as
The effect p(R, m)>1 means that PPLP is useful. Let
g(R, m) be the decreasing ratio of page fault. Thus,
using eq. (15),

p(R, m)=

1

g(R, m)={1—m}'100(%~ (16)

(i) Variance of page faults with resident page set

The number of page faults F(R, m) is peculiar to a
resident page set R. The variance of page faults is shown
in Fig. 2 as a function of the page resident set R,(SW)
for the program B. Consider the function D(x, m) and
I(R, x, m) in eq. (14). As described in section 2.3, the
function I(R, x, m), which is the number of page faults
affected by R, is a monotonously increasing function
with respect to |R|. Thus, F(R, m) is the sum of the
monotonously increasing and decreasing functions.

Notice that Fig. 2 shows that the number of page
faults decrease to an extent, namely 4 <m < 14. That is,
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Fig. 2 Page fault function F(R, m) for program B with algorithm
SW.

there is an effective range of memory size for PPLP.
With small memories, if resident pages are selected, the
pageable area becomes extremely small. Consequently,
resident page set R affects pages ye {N— R} and page y
causing page faults to occur. Therefore, E(R, m) in eq.
(11) becomes negative. On the other hand, the sum of
I(R, x, m) for ye {N— R} becomes greater than the sum
of D(x, m) for x€ R in large memories; thus, E(R, m) in
eq. (11) is also negative.

(iii) Evaluation of resident page selection algorithms

Four algorithms were tested for program 4 and B.
The results for 4 and B are presented in Fig. 3 and Fig. 4,
respectively. These figures show that the effect of PPLP
is a function of memory size m. In an approach to the
working set (WS method), a window size of 1,000 in-
struction steps was taken for program A4 and 20,000
steps for program B. These window sizes gave the
maximum effect in this approach for the program.

The effect of PPLP, p(R, m), is a function of memory
size m and resident page set R. Fig. 3 shows that the
WS method is the best, and the improvement is at most
g(R, m)=97%(p(R, m)=30.12), where m=13 and
|Ro(WS)|=6. The SW method is the second best; and
the improvement is, at most, g(R, m)=65%(p(R, m)=
2.83), where m=13 and |Ry(SW)|=9. The FR and SD
methods indicate almost the same results, and the effect
being, at most, g(R, m)=40%(p(R, m)=1.66).

Fig. 4 shows that the SW method is always better
than other algorithms for program B. The maximum
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Fig. 3 Effect of partially preloaded program for program A.
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Fig. 4 Effect of partially preloaded program for program B.

improvement of the SW method is g(R, m)=41%(p(R,
m)=1.7), where m=12 and |R,(SW)|=9. The WS
method is the second best, and slightly better than the
FR method. The SD method is the worst; however, the
improvement is g(R, m)=35%(p(R, m)=1.54), where
m=10 and |Ry(SD)|=8.

In section 3.3, it was stated that the WS method has
a very powerful effect on the programs whose time
variant working set size | W(t, T')| is large. Consequently,
the working set size for programs 4 and B were investi-
gated. The results are shown in Fig. 5. Evidently, the
working set size of program A is very variant; however,
program B’s working set size is almost stable with re-
spect to window size T.

5. Conclusion

There are many operating systems which basically
adopt LRU or Working Set strategy PRA. In this paper,
methods of reducing the page fault occurences with
PPLP were analyzed. The number of page faults re-
duced by the resident page set R is given by E(R, m) in
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Progran A
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20 4
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T: Window Size
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STEPS (UNIT=10,0001
Fig. 5 Time variance of the working set size |w(s, T)| for pro-
gram A and B.

eq. (11), where the number of memory pages is m.
m—1
It is necessary to calculate Y (:') times in order to get
r=1

the optimum resident page set R, which gives maximum
E(R, m), where the number of reference page is n and
r=|R|. However, this approach is not practical. There-
fore, practical and feasible resident page selection
algorithms are proposed; namely, SW (stepwise), WS
(higher existent ratio in the working set), FR (page
reference frequency) and SD (sum of stack distance). In
evaluating those algorithms, trace data were used which
were on real, running systems (and converted to page
reference strings) to investigate the program behavior
for algorithms. Thus, an LRU simulator was developed
and each algorithm was compared with regard to the
degree of page faults decrement.

From the experimental study, it was confirmed that
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the PPLP approach is a very useful and practical strategy
in decreasing page fault in paged virtual memory sys-
tems. The WS method was found to be especially
powerful with programs whose time variant working
set size is large. Moreover, the SW method was found to
be suitable for programs whose working set size is
steady with respect to window size. During the course
of several experiments, the WS and SW methods showed
better improvement than the FR and SD methods. The
FR and SD methods show almost the same properties.
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