On Single Production Elimination in
Simple LR (k) Environment

AKIFUMI MAKINOUCHI*

A method of syntax description for progianuning_ languages is presented. It allows to add context sensitive
conditions to the conventional BNF so that such parts of programming language syntax as arithmetic ex-
pressions can be notated without single productions. This results in speed-up of grammar parsing as well as
flexibility in description of grammars. The method of construction of LR parsers for such grammars is also

shown.

1. Introduction

Since Knuth [1] proposed LR(k) grammars, much effort
has been made in developing LR parsing methods. This
is because LR(k) grammars constitute the largest natural
class of unambiguous grammars for which we can con-
struct deterministic parsers. Moreover, it is possible to
produce LR parsers that are competitive with other types
of parsers if adequate optimizations are applied (see [2]).

Optimizations have mainly taken the course of parser
table size reduction [3, 4, 5 and 6], possibly with restrict-
ing LR(k) grammars. Among them, DeRemer’s Simple
LR(k) grammars (and their direct extensions LALR(k)
grammars) seem to have been accepted widely and
practical parser generators based on his method have
been implemented both in academic fields and in in-
dustry [7 and 8]. While considerable effort has been made
to optimize table size, very little attention has ever been
paid to speeding up Simple LR parsers, which is another
area of optimization [2 and 9].

This paper deals with a simple technique for speeding
up Simple LR parsers via single production elimination.
This problem is not negligible as the LR parser is ap-
plied to programming languages such as FORTRAN,
ALGOL, etc.; and programs written in any of these
languages contain arithmetic (and/or logical) expressions
whose parsing time accounts for a considerable part of
the total parsing time [10 and 11].

Our method starts with a basic idea as follows:

A user writes a grammar (a set of production rules)
which has no single productions but which is not am-
biguous with the aid of (left and/or right) context condi-
tions.

Although left contexts may be specified in a grammar,
the parser for the grammar does not have to look back
at the current left context. The parser remains a Simple
LR parser.

The paper [12] presented a similar idea in the sense
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that an ambiguity grammar is parsed by an LR parser
whose action table conflicts are resolved by means of
disambiguity rules such as precedence and associativity.
These disambiguity rules, however, are not integrated in
the production rules; and it seems hard and awkward,
if not impossible, to do so since precedence and as-
sociativity are notions of different levels from syntax
notation in terms of nonterminals and terminals.

2. Operator Grammar with Context Condition

We base our idea on the operator grammar as defined
by Floyd [13]. Hereafter, we suppose that the reader is
familiar with the notions and terminology of context-
free grammar and will discuss our idea rather informally.

Let G be a context-free grammar. If no production of
the grammar G takes the form A—aBCf where 4, B,
and C are nonterminals and « and f§ are strings of gram-
matical symbols (including empty string), the G is said
to be an operator grammar.

Example 1. G, which is given below for arithmetic ex-
pressions with operators + and = is an operator gram-
mar.

G,: E5E+E )
|Es E 1))
I(E) (3)
la C))

Now we introduce a context sensitive feature into
operator grammars.

Let C* be a set of, at most, k-long strings of terminals
in G. C* is suffixed with / or r, indicating left or right,
respectively. We call C} (C¥) left condition (right condi-
tion).

AG is said to be an augmented operator grammars
with negative contexts (hereafter, simply called aug-
mented grammars) if productions of 4G have context
conditions on their left-hand side as follows:

“1C}41C*>a where A—a is a production of G.
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Example 2. The following is an augmented grammar for
G,. {and} are used for set notation, and each element of
a set is separated by a comma (,)

AG,: 1{+,s}E1{s}>E+E 0y}
{«}E—-E* E )
E~(E) 3

E-a ()

Let 1C!A1C*—a be a production of an augmented
grammar AG and the start symbol of AG be S. If fady
is a right sentential form of AG, where g is a terminal
and y is a string of terminals, then the given production
rule can be applied to 4 in the sentential form and we
have a sequence of sentential forms

S=>paAy=>Paoy

where rm represents rightmost derivation, iff a¢ C} and
any first n-long substring of y(1<n=<k)¢ C*.

Example 3. Using AG, given in Example 2, we have a
sequence of right sentential forms as below. Note that
underlined nonterminals indicate the target of deriva-
tion in each step. '
E>ExE=>E+a=>EsExa
rm m rm
=>E-ata=>ata*a

rm m

The following sequence cannot occur.

_E_'=Et E=>E«E+E
rm rm

This is because production rule (1) of AG is not applica-
ble to the rightmost E in the second sentential form.

The reader may easily confirm that AG, is equivalent
to G, in Example 4 in terms of usual arithmetic expression
parsing. (See Appendix A for proof.)

Example 4.
Gy, E5E+T (¢}
|T 2
T-T«F 3)
|F @
F—(E) &)
|a ©

3. Simple LR(1) Parser Construction for the Augmented
Grammar

For the sake of simplicity as well as practicality, we
confine ourselves to Simple LR(1) parser construction
for augmented grammars although an extension to
Simple LR(k) or LALR(k) is straightforward. An LR
parser needs a stack in which is stored a sequence of
grammar symbols representing a portion of the right
sentential form along with special symbols called states
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and a parsing table which controls the next move of the
parser with a state given on top of the stack and a current
input symbol. The parsing table consists of two parts;
namely, an action table and a goto table. The reader is
invited to see Appendix B for better understanding of
moves of the parser, roles of the table, etc.

The problem, then, of the LR parser construction for
a given grammar is to fill up a parsing table. Definitions
used in this section for Simple LR(1) parser table con-
struction follow those in references [12] and [2] with
necessary modifications.

Let AG be an augmented grammar for which we want
to fabricate a Simple LR(1) parser. It is supposed that
the first production rule has the form S’'—+S4 where S’
is a new start symbol, S is an old one and FandH are left
and right end markers of the input string, respectively.

If A is a nonterminal and 1C!41C!—>a s a produc-
tion of AG, FOLLOW(1C}471C})is defined to be a set
of terminals which can appear immediately to the right
of A in a right sentential form to which the production
rule is applicable.

PRECEDE(T1C}41C}) is defined under the same
condition as the FOLLOW above to be the set of ter-
minals which can appear immediately to the left of 4 in
a right sentential form to which the production rule is
applicable.

PRECEDE(a.Bf) where 1C!A1C}!—aBB is a pro-
duction of AG is a set of terminals which can precede B
in a right sentential form and is defined as follows:
PRECEDE(a.Bf)=if « is empty, then PRECEDE
(1CLA1C L) else the rightmost symbol of a. (See note 1)

Note that C! and C! may be empty sets; so these
definitions are appropriate to any nonterminals which
are assigned no context conditions.

1CIACl—a.B is said to be an item. We define
CLOSURE(J) to be the smallest set of items where / is a
set of items and the following conditions are satisfied :

(1) [Iis contained in CLOSURE(]).

(2) - If the item 1C;/41C} > Bp isin CLOSURE(J)
and any terminal in C}! of the production 1C;!B
T1C.!>yis not in PRECEDE(x. Bf) then the item
1C;*B1Ct—.y is in CLOSURE(]).

GOTO(, X)=J, where I is a set of items, X a grammar

symbol and J is a closure of the set of items

(ACIAC>aX.BI1CIATIC} . XB is in I}.

In order to construct a parsing table for AG, we com-
pute a collection of sets of items STATE beginning with

STATE = {I,=CLOSURE ({§'>F.54})}.

Then for each set of items 7 in STATE and for each
grammar symbol X, GOTO(/, X) is computed; and if
the resulting set of items is not already in STATE, it is
added there. Computation is terminated when no more
sets of items can be added.

Note 1: The fact that this symbol is a terminal is guaranteed by
the condition that AG is an operator grammar.
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Example 5. The collection of sets of items for AG is
given below. Although context conditions are omitted,
the reader can easily supply them by tracing the com-
putation step by step.

I,: E'—t.Ed I;=GOTO (I, %)
E—.E+E :E-E« E
E—.EsE E-.(E)
E—P.(E) E—.a
E-.a I;=GOTO (I, E)

1,=GOTO (I,, E) t E-(E)

:E'>FEA E-E. +E
E-E+E E-E«E
E-E+E I,=GOTO (I, E)

1,=GOTO (I,, ) tESE+E.

: E-(.E) E~E+E
E—.E+E Iy=GOTOds, E)
E>EsE :E-E=*E.
E—(E) I,=GOTO (I, ))
E-.a 1 E=(E).

I,=GOTO (I, )

: E—>a.

I,=GOTO (I, +)

E-E+ . E
E- ExE
E->(E)
E—>.a

Once STATE for AG is established, it is possible to
construct action and goto tables of the LR parser for
AG following the rules given below:

Let the set of items 7, in STATE be named state i.

1. If 1; contains an item of the form 1C}41C}!—a.af
where a is a terminal, then the action of state i on input
a is “shift j> where j is the state associated with the set
of items GOTO(/,, a).

2. If I contains the item S’'—FS.4, then the action of
state 7 on the right end marker 4 is “accept”.

3. If I; contains the item 1C}41C!—a. and a is in
FOLLOW(1C;41C}), then the action of state i on
input a is “reduction by production "1C}41C!>a”.

4. Otherwise, the action of state i on input a is “error”.
5. The goto table entry for state i on nonterminal A is
the state j where I,=GOTO(/,, 4).

When one, and only one, action is defined for each
entry of the parsing table, the parser is said to be a
Simple LR(1) parser for the given augmented grammar.

Note that this construction method can be applied to
any Simple LR(1) grammar which is not necessarily an
operator grammar. This is so because C} and C! are
allowed to be null.

Example 6. Table 1 in Appendix B is the parsing table for
AG, defined in Example 2.
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4. Specification Capability of Augmented Operator
Grammars

Examples given here show how powerful and simple
it is to specify a syntax of a language by means of aug-
mented operator grammars. All of the examples are
cited from the reference [12]. What we are interested in
here is a class of augmented grammars, each of whose
parsers is not only a Simple LR(1) parser but also more
economical (in terms of parsing table size and parsing
time) than the parser for the counterpart Simple LR(1)
grammars.

Example 7. The following is another version of G. The
expression is evaluated right to left as in APL.

AG,: ET{+,*}>E+E )
E{+,s}>EsxE )
E —(E) 3)
E —a ©)

Example 8 may help the reader to conjecture a rule
for defining a syntax of more complex expressions which
involve several operators.

Example 8. The lowest precedence is given to <; and
progressively higher precedences are assigned to opera-
tors +, », 1 in this order. + and — have the same
precedence and so do * and /. < has no associativity,
+, —, = and / are left associative and 1 is right associa-
tive as usual.

AGy: {<, +, —, %, }E{<, +, —,+ /, 1}

—-E<E 6]

H+, = s L, TETS, [, T}E+E ¥))
U+, =%, TIEs, [, 1}»E-E 3
s, [, 1}E{1}oE+E )
s, L TMET{T}-E/E ®
EQ{1}-ETE ©
E—~(E) @)
E—id ®)

The same idea may be applied to PL/I like IF state-
ment.

Example 9. else is to be associated with the closest
unmatched then.

AG,: Si{else}—if boolean-expression then S
|if boolean-expression then S else S
s—»other-statement

5. Implementation Consideration

So far, we have explained our idea on the basis of
operator grammars. Although operator grammars seem
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flexible enough to specify a variety of programming
languages’ syntaxes, it may be nice if almost all the
syntax of a desired language can be written by means
of non-restricted context-free grammar notation and if
the augmented grammar notation is incorporated in
small parts of the syntax where the latter notation
benefits. An arithmetic (and/or logical) expression is a
good example of such parts. This is possible if a non-
terminal with a left context condition specified in the
left hand side of some production rule in a given gram-
mar is always preceded by terminals in the right hand side
of any production of the grammar. We can say this
because left contexts to be checked against specified left
context conditions on the rightmost derivation of the
grammar need to be fixed only when a collection of sets
of its items is calculated.

The right context condition of a production, if any, is
merely concerned with selection of one of the actions
which, without the context condition, would conflict in
a parsing table entry associated with the state involving
an item with a dot at the end of the production and
indicates that reduction by the production should be
excluded.

Therefore, implementation of the context condition
feature in the environment of the Simple LR parser is
very simple. In fact, we are implementing a parser gen-
erator whose features are like the following:

1. Generates an LALR(k) parser for a given grammar,
where k=0, 1, 2 or 3.

2. Accepts a wide variety of extended BNFs, especially
with great freedom in putting semantic actions in a
production rule.

3. In addition to 2, the generator accepts the context
condition notation.

4. Provides for a given-grammar dependent, but not a
specific-language dependent, error recovery routine.

We have completed the implementation and plan to
have various experiments.

6. Conclusion

It has been shown so far that with restricted but very
simple context conditions a grammar (which, without
them, would be ambiguous) can be parsed in an LR
parser.

This seems to be a considerable improvement in favor
of LR parser application to real programming language
parsing.

The works [9, 14] presented the idea of using ambigu-
ous context-free grammars with disambiguity rules in-
volving notions such as precedence and associativity
and showed that LR parsers for them can be constructed
with the aid of disambiguity rules to resolve LR parsing
table conflicts.

The work [15], on the other hand, discussed theoreti-
cally the possibility of conversion of a context-free
grammar to a context-sensitive grammar whose produc-
tion rules may be associated with a(m, n) context so as
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to reduce the number of nonterminals and showed some
interesting theoretical results. It must be mentioned,
however, that the (m, n) contexts are affirmative; while
the context conditions with which an operator grammar
is augmented are negative in the sense described earlier
in this paper. Moreover, the (m, n) contexts seem to be
checked during parsing although the work did not men-
tion any particular parsing method.

We showed in this paper that certain kinds of un-
ambiguous (context-sensitive) grammars with negative
(1, 1)™* 2 context conditions may be parsed by LR
parsers (especially by simple LR parsers) and that the
context conditions are directly related to the construc-
tion of an LR parsing table without conflicts. Hence, our
idea may be said to be an amalgam of the previous ones
mentioned above.

Appendix A:

To show that AG, is equivalent to G, (in the sense
that any expression generated by 4G, can be generated
by G, with the same production tree except for single
productions and vice versa), we make a transformation
between the two grammars which preserves the produc-
tion tree structure, except for single productions. The
transformation is done step by step; and it is easily seen
that each step transformation preserves the production
tree structure, except for single productions.

AG, is transformed into G,

Because productions (1) and (2) of AG, cannot be
applied to E (which is at the right side of * in produc-
tion (2)), we can replace the E by F if production E—F
is introduced and every left-hand-side E of productions
(3) and (4) is replaced by F in order to preserve the
applicability of productions (3) and (4) to E of produc-
tions (1) and (2). Thus, we have the following grammar
omitting * from the context condition in question.

{+}E{s}>E+E (1-1)
FE —ExF (1-2)
E -F (1-3)
F —(E) 14
F —a (1-5)

Because production (1-1) is inapplicable to E at the
right side of + in (1-1) as well as to E at the left side of
» in (1-2), replace these E’s and E’s in the left hand side
of (1-2) and (1-3) by T and introduce production E—-»T
which will preserve the applicability of (1-2) and (1-3)
to the E which has not been replaced in the right-hand
side of (1-1). Then, by omitting the conditions which
are no longer necessary, we have G, as follows:

E—E+T @2-1)
E-T (2-2)

Note 2. Note that the extension to (m, n) context is a direct thing
to do, although it is not necessary from the practical viewpoint.
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T>TsF 2-3)
T-F 24
F-(E) 2-5)
Foa (2-6)

Transformation of G, to AG,

The transformation is done by reversing the trans-
formation of AG, to G,. Firstly, replace T by F and,
secondly, F by E. The applicability of productions being
considered, appropriate context conditions are given to
the left hand side of the productions.

Appendix B:

LR parser consists of an imput tape, a stack and a
parsing table. The parsing table is represented by a two-
dimensional matrix where a row represents a state /; and
a column either a lookahead terminal symbol string u
for an action part or a grammar symbol X for goto part.
An entry is designated by f(I;, u) for an action part or
goto (I, X) for a goto part. See Table 1 for grammar
AG,. This is a Simple LR(1) parsing table.

As in [2], an LR parser’s move is expressed by a se-
quence of LR parser configurations which are a triple
(loX 1, - - X1, @, 7) where I, is a state, X, is a grammar
symbol, w is a string of terminals, and n is an output
string of production numbers. I,X,1,- - - X/, is in the
stack whose top contains 7,,, and w is on the input tape.

Let the parser be in configuration (I,X,1," - * X, 1, @,
n).

1) If f,, w)=shift I and w=aw’ then the next con-
figuration becomes (I, X, I, - - X, I,al, ', 7).

(2) If f(I,, u)y=reduce i and the i-th production is 4—a
and the length of a=/, then the next configuration is
(LoX. 1, X,,_iI,_ Al ®, 1) where I,_, is the state on

Table 1 Simple LR(1) table for AG.

si, ri and a are abbreviations of shift /, reduction i and accept,
respectively. This table is smaller by 2 rows and 2 columns
than the corresponding table for G,.

i
State Action G gt o
+ . ( ) a —
0 §2 53 1
1 S4 S5 a
2 S2 S3 6
3 rd rd4 r4 r4
4 S2 S3 7
5 S2 S3 8
6 S4 S5 9
7 rl S5 rl r1
8 r2 r2 r2 r2
9 r3 r3 r3 r3
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the top when a string of length 2/ is removed from the
top of the stack and I=goto (7,,_,, A).
(3) Otherwise, there is no next configuration.

The following is the move of the LR parser for AG,
with input a+a.

(0, a+aH, e)F(0a3, +a, ¢)
FOEL, +aH, 4)
HOE1+4,a4,4)
FHOE1 +4a3,4, 4)
FHOE1+4E7,4, 44)
HOE1,4, 441)
taccept

This sequence of configurations is shorter by 3 than the
corresponding one for G,.
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