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Let x© be an approximate solution of a system of nonlinear equations. On the basis of the theory of pseu-
dometric space due to Schrider, Collatz and others, a theorem is first proved which determines an existence
region of a solution of the system. Next, the result is applied to derive a theorem which may be useful for find-
ing a sharp error bound of each component of x‘®. Further, after proving a uniqueness theorem, an algorithm
is presented for finding the best uniqueness domain based upon it. Finally, the results are illustrated with a

system of two nonlinear equations.

1. Introduction

There is abundant literature concerning the conver-
gence of iterative methods for finding a solution of a
nonlinear equation

fx)=0, O

defined on a domain D in R". Many of the results de-
veloped there are applicable for estimating the error of
an approximate solution x{® which was obtained by
some method. However, the usual norm estimates may
not be suitable in general, when one wants to find a
sharp error bound of each or specified component of
x, In this case, it is desirable to apply the convergence
theorems in pseudometric space which were obtained by
Schrader [7], [8], [9], Collatz [2] and others.

They are formulated in a certain set Dy < D containing
x©@ (cf., for example, Theorems 1-3 below). However,
no criterion for the choice of D, has been given, while the
estimates depend, in general, on the set D,. In fact, for
finding a sharp error bound, the set D, should be chosen
as small as possible. On the other hand, for finding a
large uniqueness region, D, should be chosen large.

In this paper, after stating notation and definitions in
§2, we first establish, in §3, a theorem giving a sharp
existence region of a solution, which is independent of
an initial choice of the set D,. It slightly improves Schr-
dder’s one. Next, it is shown how the result is applied in
practical computation to find a sharp error bound of
each component of x{®, Further, in §4, we prove a uni-
queness theorem which somewhat generalizes a theorem
of Kantorovich and Akilov [3] and describe a practical
algorithm for finding the best uniqueness domain based
upon the theorem. Finally, in §5, the results are illustrated
with a system of two nonlinear equations.
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2. Notation and Definitions

Let x=(x,,..., x,) and y=(y,,. .., y,)" be two column
vectors of R". We write x>y or y<x to signify that x;=y,
for all i. Thus x>=0 means that all the elements of x are
nonnegative. We put v[x]=(|x,],.. ., |x,])' and p(x, y)=
v[x—y]. Then R" becomes a complete pseudometric space
with a pseudodistance p(x, y), where the limit of a
sequence of vectors are naturally defined (see Collatz
[2]). A symbol x>y or y<x means that x>y but x#y.
The same notation is used for two matrices 4=(q, ;) and
B=(b;;) of the same type. For example, 4=B means
that g;; = b, for all i, j, and we put v[d]=(la;;), etc.

The spectral radius of an n x n matrix A is denoted by
a(A).

As a vector norm, we adopt the sum norm |x||=
[x(]4 - +|x,|. Observe that, if x>0, y >0 are two vec-
tors, then

x+yll=lx] +1yl. @
The corresponding matrix norm is defined by
4= max ||Ax| =max Z |aij|-
lIxli=1 j =1

If C=(c;p), i, J, k=1, 2, -, n is a bilinear operator (a
tensor of the third order), then, analogously, we have

[Cl= max
Ixll=lyll=1

For a nonnegative vector d>>0 and a positive number
r, we put

n
| Cxy| = max Z Icijk|°
jk oi=1

U(x, d)={x e R"|p(x, x)<d},

S, r)={xe R |x— x| <r},
and

S, r)={xe R |x = x| <r}.

J(x) stands for the Jacobian matrix of f(x) =(f;(x)," - -
Jf.(x), provided that it exists on D.
Finally, we shall call an operator G: DS R"->R" a
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P-contraction on a set Do < D if there exists a matrix P
with P>>0 and o(P) <1 such that, for every x, yeD, p(Gx,
GY)XPp(x, y).

3. Componentwise Error Estimates

Let x@=(x{?,: -+, x{*)* be an approximate solution
of (1). In this section, we shall prove an existence theorem
(Theorem 4) of a solution and gives a practical method
(Theorem $S) for finding a sharp error bound of each
component x{¥(1 £i<n).

We first refer to two important results which are
special cases of the theorems originally obtained by
Schréder.

Theorem 1 (Schrider [7], Ortega and Rheinboldt [4)
and Collatz [2]). Let G be a P-contraction on a closed set
D, and

GD,< D, 3)
Then G has exactly one fixed point x* in D,. If x® € D,,
the iterates x**V=Gx®, k=0, 1, 2,---, belong to D,
and converge to x*. The error estimate
P, X)<U=P) PHp(x'®, xV),

k=0,1,2,---, @)

holds. Further, if the condition (3) is replaced by
U=U(Y, (I~ P)~ ' Pp(x®, xV)) € Dy, )

then GUcU and the same conclusions-hold in U: the
sequence {x¥} belongs to U and converges to the unique
Jfixed point x* in U, and the estimate (4) holds.

Theorem 2 (Schroder [8], [9] and Rheinboldt [6]).
Suppose that there exist a convex set Dy< D which con-
tains x* and a symmetric bilinear operator B(D,) such
that, for every x, y in D,

VIJ(x) = I (M B(Do)p(x, »). -(6)

Let A be a matrix and put K=v[I—AJ(x¥)} and e¢=
VIAf(xO)). If the sequence

1 2
d®=0, d**D=3vA]1B(Dy)d™" +Kd® +e,
k=0,1,2,.--,

converges to a vector d* >0 and, if U(x'%, d*)< D,, then
(1) has exactly one solution x* in U(x(®, d*).

On the other hand, the following theorem was proved
byUrabe [10].

Theorem 3 Given an equation (1) where f(x) is con-
tinuously differentiable with respect to x in the set D of the
x-space. Let x'® € D and suppose that there are an nx n
matrix A, an n x n matrix P20 with the property o(P)<1,
and an n-dimensional vector 6 >0 such that

() Dy=U(x,8)<D,
(i) v[I-AJ(x)]<XP for any xeD,,
(iii) (I—P) o6,
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where v is an n-dimensional vector satisfying e=v[Af(x'?)]
=v. The equation (1) then possesses a unique solution x*
in Dy, and it is valid that det[J(x*)]#0 and p(x®, x*)<
(I-P)" 1.

Obviously, this theorem follows from Theorem 1. In
fact, if we define an operator G by Gx =x — Af(x), then it
follows from the condition (ii) of Theorem 3 that G is a
P-contraction on D, since G has the first Fréchet deriva-
tive I— AJ(x) at every x in D. Further, the conditions (i),
(iii) imply (5) with D, = D,. We thus obtain from Theorem
1

P, X< P) " p(x®, X)L (I— P)~ 0.

The estimates obtained from these theorems depend
on the choice of D, or D;. However, the theorems tell
us nothing about how to choose them. For example, in
Theorem 3, we should choose 6 so small that the condi-
tions (i), (ii) are satisfied. But, if § is too small, then the
condition (iii) may not hold.

To overcome this difficulty, we now set the following
assumptions:

Assumption 1. There is an nxn matrix A such that
the matrix K=v[I—AJ(x®)] has the spectral radius
which is smaller than unity.

Assumption 2. Given any convex set D,< D, there
exists a symmetric tensor of the third order H(D,)=
(h;u(Do)), i, J, k=1, 2,. . ., n such that A, ;(Dg) 20 for all
i, j, k and

P(AJ(x), AT(y))< H(Do)p(x, ), )
holds for every x, y in D,,.

Assumption 3. The tensor H(D,) is monotonically
increasing and continuous. That is, if Do< D}, then
H(D(Q%H(Dé,) (i.e., hu]‘(Do)§h1jg(D6) for all i, Js k) and
H(Dy)— H(Dg) as Dy— Dy. Observe that Assumption 1
implies the nonsingularity of J(x'?) and that Assump-
tions 2 and 3 are satisfied if the second Fréchet derivative
of f(x) exists and is continuous in D.

Further, we set

e=VAf(xV)], e=(-K)"s,

Cd)=(I-K)"'H{U(x?, a)),

Cle+lel(t,: -, l)')=(cijk)’ ci=n}ix Cijks
and

c=(cy,- -, €)'

Then, under the above notation and assumptions, we
first have the following theorem.

Theoremd Let Ux?, 2)le|(1,---, DYeD. If 2|c|-
lel <1 or 2[CQllel(1, -+, 1))|I-llell 1, then the mono-
tonically increasing sequence

5020, SEV=ICE 4, k=0,1,2--, (B)
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converges to a vector 6* and the equation (1) has a solution
x* in U(x\?, 6%). There is no other solution in U(x®, 5*).

Proof. We first consider the case where 2|c||‘ |le] 1.
For every vector u;=0, we have Cle+ [lel/(1," - -, 1)Ju?<
|lull%¢c. But, as is easily verified, the equation

1
5||u||2c—u+e=0, uz0,

has a nonnegative solution

s el
T=lell-Tell+/T=20el e

c<e+el(,---, 1.

Therefore, by Assumption 3 and by induction on k, it is
shown that the sequence

1
W=0, wt V= juV)ete, k=0,1,2,,

satisfies

1
WM 3 leh?c+e=a.

Since the sequence {6W} is monotonically increasing, it
converges to a vector §*>=0. It is a solution of the equa-
tion C(6)6* —28+2e=0, since, by Assumption 3, C(6™)
—C(6*) as k— 0.

Now, to prove the existence of a solution in U(x(?, §*),
we apply the majorant principle due to Schréder [8], [9]
and Rheinboldt [6]. For every vector v, let H=H(U(x®,
*)) and

1
v(v)= 3 Hv*+Kv+e.

Then it is known [8], [9] that a sequence of vectors v™ =
Y* D)k =1), =0, majorizes the sequence x* =
x®TD— Af(x* Nk 1):

POHHD, XO)* D g®, k=0,1,2,-. (9)

In fact, we have

1
x 1) __ k) — (k) _ (K~ ”—-AJ(X(O))(x(")—x("' l)) —A J‘ {J(x(“" Dy ,(x(k)_x(k—l)))_J(X(O))}(x(k)_x(k—l)) dt,
0

and, by induction on k,

P10, ¥ Kp(x®, X~D) 43 H{p(x®, 2O+ p(xh=D), 2} (a9, 24 1)

<K(v"" —ptk 1)) + % H{(v(") — v(o)) + (v(k— y_ l)(0))}(,_,(10 —pk- 1))

= K™ —p*- 1) 4 % (Ho™* = Ho®~ D) = g (o®) — (0%~ D) = p*+ D — y®,

where we have used Assumption 2.

Further, if v=<X6*, then y(v)<Xy(6*)=5* since C(6*)6*2 —
26*+2e¢=0. This shows that v™W=<6*(k=0) and the
monotonically increasing sequence {v} converges to a
vector v*. It is easy to see that v*=45*. (See Remark 1
below.) We thus conclude from (9) that {x®} converges
to a vector x* in U(x?, 6*), which is a solution of (1).
The uniqueness follows from the proof of Rheinboldt’s
theorem [6; Theorem 2.6]. In fact, we can show that if y*
is any solution in U(x(?, §%), then

p(y*, x=x6*—ov®, k=0,1,2,--,
which implies that y*=x* We should remark here that
U, %)< UK, 2)lell(1,- - -, 1)) <D,
since, by (2),
llell®

1=llcll-lell ++/1=2lc] - le]
2| el

TN AT £2ffe]l. (10)

Next, we consider the case where 2||C(2]le||(1,- - -, 1)9)]|
‘llel =1. Let C=C(2]le|i(1,- - -, 1)") and

_1=/1=2|C| - Jlell _ 2lell
1cl 1+/1=2|C]-llell
Then the sequence

6% < Nleell =llell +

llel

w0 =0, w("”)=%Cw“‘”+e, k=0,1,2, -,

remains in 5(0, r) and converges to a vector w*, since, by
induction on &,

1 1
1wt DI SICH- Iw®I +llell S 51Cllr + el =r.

This implies that
SOLWOLWEr (L, -, 1'<2lel (L, -, 1Y

Hence, {6} again converges to 6*. This means the
unique existence of the solution x* in U(x(?, §*). Q.E.D.

Remark 1. The sequence {v®} converges to 8*. For,
if v*<d*, then |v*|| <||6*| and

O*—v*=y(6%)—y(v*)
=% HU?, 6*))(6*2 —v*2)+ K(6* —v*),
so that

5% —v*= %(1— K) T H(U(X®, 5%))(6%2 - v*2)
= %C(&*)(&‘ +0¥)(6* ~v*)

<31+ 0l -, DE* —0?)
<8+, =%,
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where we have used the facts that §*<Xe+ |le| (1, - -, 1)
and
C(O*uxC(e+el(,---, DIu
Cl .. -cl
<lulf-{ ----- =lulle(,---, 1),

Cpr e Cp

for every vector u=0. Hence, by (10),
o< [|o*—v*[[ < [[0*] - llcll-o* —v*
=2lleli-llcll - (6* —v* [ S 116* —v*1,

which is a contradiction and we must have v*=g3*.

Remark 2. 1If 2|c||-|le]l<l or 2||C|-|lell<1 where
C=CQ|e|(1, -, 1)"), then the matrix J(x*) is non-
singular, that is, the solution x* is simple. To prove this,
let L=1—AJ(x'®). Then o(L)<a(K)<1 so that J(x(®)
is nonsingular and J(x¥)"'=(I-L)"'4. Therefore,
putting M =TI—J(x‘¥)"1J(x*), we have

VIM]=v[(I- L) (4J(x*) — AT (x*))]
W+ L+L*+ - - - JHO G, §%)p(x?, x*)
ST+ K+K?+ - ) HOE®, 6%)5*
=C(6*)o*<[16*|le(1,- -, 1),
so that
Ml =IIVIMH < [16*] - el <2ell- llell-

Similarly we have WM]<C5* and |M|<|C|-|6*|<
2||C) - lell. Consequently, if 2]c| - ]| <1 or 2]/C] - [lel| <1,
then M| <1 and J(x*)=J(x'9)(/— M) is nonsingular.
But, if 2||c||: lell=1 or 2||C| - |le]l =1, then J(x*) may be
singular. For example, let n=1, f(x)=x%, xX¥=a>0 and
A=(2x'9)"1. Then a simple computation yields c=C=
H=a"1,2¢e=2e=6*=aand 2|c|| |lef =1. Thus Theorem
4 asserts that there exists a unique solution x* of (1) in
the closed interval [0, 24). But, x*=0and J(x*)=/"(0)=0.

Remark 3. It would be interesting to compare Theo-
rem 4 with Theorems 2 and 3. If the convex set D, in
Theorem 2 includes the region U(x{?, §*), then, obvi-
ously, we have 6*<d*. Next, as the region D; in Theorem
3, we take D*=U(x®, 6*), a sharp region whose a
priori choice can not be expected in a practical computa-
tion. Then, for any x in D;=D*, we have

V= AJ ()] =V[I— AT (x®) — A(J (x) — T (x'O))]
<K+ H(D*)o*,
provided that (7) holds. (We may take H(D*)=v[4]B(D*)
if (6) holds.) So we can take P=K+ H(D*)6*. Then we
have

1
e+ Pé*—o*= 3 H(D*)6*>0,
which means that (/—P)™'e>-5* if o(P)< 1. Therefore,
in order that Theorem 3 gives a sharper estimate than

Theorem 4, § should be chosen so small that §<J*.

Remark 4. If the equation (1) is defined on a domain
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Din C"and x'¥ € C", then our theorem holds by putting
U(x®, d)={x e C"p(x, x?)<d]}, etc.
Corollary. Let f(z)=0 be a single equation in C* or R!

and apply the Newton method z, ., =z,—f(z)[f (z:), k=
0,1,---. Set

&a1 =11z DI (Zea DI,
Mi.y= sup |f"(2)! and Ay =My /I (2es )l

zeDy -1

Dyy ={2llz— 2z 41| =28 41},

provided that z, ., is defined, f'(z,,,)#0 and f"(z) exists
in Dy, y. If 2hy 4 18441 S 1, then a solution z* exists and is
unique in

2844

D} ={ C|zie1— 5__=__}' !
e 1=92€ CY |z, 44 z|_1+\/1—2hk+18k+1 an

Remark 5. Let
ﬁx—1={z|lz"zk|§6k—1} and Mk—1= sup |f"(2)l-

z€Dy -1

Then, Ostrowski’s theorem [5; Theorem 7.2] asserts
that, if 26, My, <|(z- ), then

|zk+,—z*s§§%5e§_l, 12
26 f (@) S My 8k,
e,,+1§%e,‘§%s,‘_l, and 2eM,_ Z|f'(z).
Obviously we have D,,,=D,_, and M,, <M, ,.
Hence
2¢ M, _
T shrmn S SaS gy

That is, the estimate (11) is sharper than (12).
Under Assumptions 1-3, we now obtain the following
theorem which may be useful when one wants to find a

sharp error bound of each or specified component of
(0)
x(@,

Theorem 5 Let U(x'®, 2jjej|(1,- -+, ))<= D.
(i) If 2lcll- el £1, then there exists a solution of (1)
in U(x\9, a), where
llell? c
1—cllllell +/1=2llc] - llell
(ii) Let {6™} be the iterated sequence of vectors defined
in (8) and set {®=2(3%*1—5®) and y®=5"+£®,
provided that 2| c| - le]l £1 or 2| CQ2Jlell(1,- - -, D) llel =
1. If the conditions

n=<2lell(1,- -+, 1),

oa=e+

and
{C(n(")) - C(é("))}é("’z + 2C(r]("))5”‘ + l)c(k)< é(k)-

are satisfied for some k=0, then there exists a solution of
(1) in T, n®).
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Proof. It remains to prove (ii). Assume now that
3M<n™ for some /> k. Then we have

SU+D - %C(é‘ D)§D? 4 e % CH™® + e
= %C(,,(k))(é(k) + g(l))Z +e
= % {C(q(")) - C(a(lz))}‘;(h)z + C(ry‘”) (5(k) + % f(")) E®
+ % C(E™)o®* + e
= % {C(H®) — CE@)}6®* + C(®)s*+ VE® 4 5+ 1)
< % EW) 4 5+ 1) _ B,

Therefore, by induction on I, we have §"<y® for every
I>k. Letting /- o0, we now obtain 5*<n™®=<2|e|(1," - -,
1)!, which means the existence of a solution in U(x(®,
7™). Q.E.D.

4. Determination of a Uniqueness Domain

Given an approximate solution x® of (1), it is also of
importance to find a uniqueness domain as large as
possible. In this section, taking account that the paral-
lelotope U(x(®, d) with a vector d3>0 is included in the
corresponding ball S(x?, ||d||), we shall present a method
for finding a uniqueness domain S(x(®), r) as large as
possible. We keep the assumptions of §3.

We first prove the following theorem which slightly
generalizes a theorem of Kantorovich and Akilov [3],
[6; Corollary 3.3}.

Theorem 6. Let Dy=S(x?, ryc D for some r>0 and
set C(r)y=(I-K)"'H(Do). If 2|C(r)||-lel <1, then (1)
has at most one solution in S(x®, r**)nD,, where

pree 2 LH/1=21CON - llell
1@

Proof. For simplicity, let H=H(D,) and Gx=x—
Af(x). Then, for every x, y in D,

Gx—~Gy=x—y—AJ(x(x—y)
—4 r JO+tx—y)—J =)} (x—y) dt,
[+

and, by (7),

P(Gx, Gy)<Kp(x, y) + 3 H{p(x, ¥¥)+ p(3, X)) p(x. ).

" (13)

Therefore, if x* is a solution in S(x'?, r**)nD,, then
P, x)=p(x(@, Gx )+ p(Gx?, Gx*)

1
<e+Kp(x?, x*)+ 5 Hp(x?, x*)?,

so that
p(x®, x*)<K(U—K) e+ %(1_ K)™'Hp(x'®, x*)?
- e+ ep,
In particular, we have
1 — x*] < lell + %ué(r)u @ —x*2.

This gives us

1@ _ oy g r 3 Lo/ 121G el
- ieonr

since, by assumption, ||x(® — x*|| <r**,
Now, to prove the uniqueness, let £ be another solu-
tion in S(x'?, r**)nD,. Then, it follows from (13) that

p(&, ¥%)=p(GS, Gx*)

<K(R, x)+ 5 H{p( ) + plac%, XN} (2, 2%,
or
p(3, X< 53U~ K)  H{p(2, x¥) + p(x*, XV)}p(2, x*.

Since ||£ —£®|| <r*, we thus obtain
12 =x*| S ICE)r*%—x*|
={1=/1=21C@)I-Tell} £ —x*],

which means £ = x* since 2||C(r)||- ||l < 1. Consequently,
(1) has at most one solution in S(x®, r**)nD,. Q.E.D.

Corollary. Let U, 2Jel(l,--, 1)')=D and 2||C
Qliell (1, -+, DY - llell < 1. Then the solution of (1) (which
exists in U(x'?, 6*) where 6* is the limit of the sequence
(8)) is unique in 3(x'?, 2|le|).

Proof. Take r=2|e| in Theorem 6, by noting that
ICHI=ICE@,- - -, D) and r**>2|e|. (The solution
of (1) does exist in U(x'?, §*) by Theorem 4.) Q.E.D.

The best uniqueness domain based upon Theorem 6
is obtained, if the radius r of the closed ball D, is chosen

so that
o] +/1=2|C() - e
1CHY )

Such an r can be found by the following procedures,
provided that the domain D is sufficiently large.

Procedure 1. Let 2p,=2(C2llel)l-llell <1
ro=2|le|| and

and set

_1+/T=2p,

So= .
*leé@leDl

Procedure 2. Assume that S(x'?, sq)< D and define
the bounded sequences {r;}, {s;}(i=1,2,---) as follows:
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If 2p,=2|C(s;- DI - llell <1, then set

_ 14+./1-2p,
O= TG

ry=max {r,_,, min {s;_;, @;}},
1
sl=’2'{’i+max {si-1, @3}

If 2p, =1, then set r,=r,_, and s;=4(r;_, +5;,-,)-

Then, the solution is unique in S(x'”, ) and the se-
quence {r;} is monotonically increasing and converges
to a positive number r, the desired one. Note that r;<s;<
5o for each i.

For automatic computation, however, it may be
convenient to replace €(s)) by C(s(1,: - -, 1)*), although
the result obtained becomes rather rough.

5. A Numerical Example

To illustrate our results, we take up the system
=3x2x,+x3-1=0,

fl 4’1 2 32 (14)

fo=xi+xx3—1=0,

which was considered by Kantorovich and Akilov [3].
By using the Newton method starting from an initial
value (0.98, 0.32), they obtained an approximate solu-
tion x(¥*=(0.991189, 0.327382) and concluded that
there is a solution x* such that

0.991173 < x* £0.991205,
0.327366 < x* 0.327398.

We shall apply Theorem 5 to (14) and x‘?, by choosing
A=J(x®)"* The second Fréchet derivative of f(x) at
x is

(15)

’ flll flll lel f122
J'(x)=
f211 f212 f22l f222
(6):2 6x, 6x, 6x2)
T\12x2 3x2 3% 6xyxy)”
where
1 _ )
Wk Ox 0%,

Therefore, B=B(U(x'®, d)) defined in Theorem 2 is
obtained if we replace each x{® in the expression of
J'(x?) by |x{V] +d,. Set H{U(x'?, d))=v[A4)B. Then, it
is easily verified that 2| c| - |le|=0.21--E~4<1 and

o' =(0.5215503- - - E—6, 0.1331679- - - E—5).

Thus, by (i) of Theorem 5, we can assert that the solution
x* does exist in U(x'?, a) and
0.9911884- - . <x¥<0.9911895- - -,

(16)
0.3273806- - - S x3<0.3273833. - -

This estimate is sharper than (15). Further, if we execute
the iteration (8) with a stopping criterion §*+1 — 5=
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107*3(1,- + -, 1)*, then this condition is satisfied at k=2,
as well as the conditions in (ii) of Theorem 5, and we
obtain

n¥'=(0.5215459- - - E—6, 0.1331677. . . E—5),

which slightly improves the estimate (16). Observe that,
if | ]| - lell is sufficiently small, then

exé*<axe+|e|’c=e.

Therefore, in this case, there is little difference between o
and n®. The result of the modified procedure described
at the end of the previous section is also shown in Table 1,
which shows that the solution is unique in S(x'%, r,) for
each i.

The computation in this example was done on a
FACOM 230-28 computer of Ehime University, with
double precision arithmetic chopping to hexadecimal
14-digit numbers. The values of r; and s; in Table 1 are
respectively chopped and rounded to six digits.

Table 1 The radii of the uniqueness domain S(x‘®, r).

i r S

0 0.370643E—05 0.350150E +-00
1 0.188274E+00 0.269212E+00
2 0.213309E+-00 0.241261E+-00
3 0.223187E-+00 0.232224E+00
4 0.226535E+00 0.229380E+00
5 0.227606E +00 0.228493E+-00
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