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How well to design software systems is a key to the success of software developments. In this paper, a unified
design methodology, which integrates module decomposition techniques based on control flow and those
based on data flow, is introduced to construct well structured software systems. In this method, a system will
be designed as a hierarchy of subsystems, each of which is either a control flow combination or a data flow
combination of its subsystems. Since it is possible, under a set of rules offered, to select at each refinement step
a best suited decomposition technique, the methodology may be more widely applicable than any other existing
ones. A software design system developed to aid the design on the new methodology is described. The system
consists of a system design language, to represent the design along the new methodology, and its processor,
which generates various design analysis reports. Also, a simple programming tool is provided to realize a system
designed through this method in conventional programming language.

1. Introduction

Reliability and maintainability of large scale software
system are mainly determined by its design quality.
Generally, large scale software design is divided into the
following two activities;

(1) Decomposing the whole system, step by step,
into sets of simpler components with simple
relations (modularization design),

(2) Designing program structures for primitive com-
ponents which are not further decomposed (inner
module design).

The latter is considered as designing many small
programs, if each primitive component function is as
separate and as simple as realizable by a small program.
So, the complexity of large scale software is mostly
treated in the former activity. Thus, the modularization
method to overcome the complexity are of great im-
portance in software engineering.

This paper introduces a new modularization method-
ology, which unifies control flow based method (using
module call relation) and data flow based method (using
data passing relation) to make the best use of each
advantageous feature. Then, a design description
language for unified design representation, based on the
methodology, and its processor that analyzes the design
results, are described.

Control flow based modularization has widely been
applied in conventional software developments. In this
method, the execution sequence of modules must com-
pletely be determined by the calling programs. However,
there are many cases, in which system function may be

*Software Product Engineering Laboratory, Nippon Electric
Co., Ltd., Kawasaki, Kanagama 213, Japan.

Journal of Information Processing, Vol. 3, No. 3, 1980

represented as a series of mappings from input to output
data. The execution sequence of the mapping processes
should satisfy only a rather trivial condition: The produc-
tion of a datum should precede the consumption of the
datum. Thus, only partial execution order is required
here.

For this case, a model (data flow model) wherein a
number of processes are executed in parallel, while
passing data to each other, is suitably adapted. If control
flow based modularization is applied to the case, the
execution order would be forced to change into com-
plete execution order. This often tends to make programs
complex and hard to change, because extra variables are
embedded in several portion of programs to dynamically
control the execution sequence flow. To avoid
complexity, which cannot be overcome by conventional
control flow based modularization, data flow based
modularization is introduced in the methodology.

On the other hand, attempts to realize systems by data
flow alone have been made in computer architecture
research, such as the data flow machine proposed by
Dennis [1]. However, data flow alone is apt to create
rather more complex programs than conventional
sequential ones with similar functions, because extra
data, other than major data streams, are needed to
dynamically control the major data flow. From under-
standability and flexibility viewpoints, data flow alone
seems to be insufficient and impractical to resolve all
kinds of problems in large scale software.

In general, it can be said that data flow is suited when
functions are representable by a series of data stream
transformers, while control flow is suited when functions
are specified as a combination of procedures and the
execution sequence provides information essential to
understanding the functions. These two modularization
methods are both useful. Selective usage of the two,
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without any confusion, is desired in constructing a highly
modular system.

The modularization methodology, described in this
paper, consistently unifies these two modularization
methods under functional hierarchical structuring tech-
nique to enhance advantageous features of each. Any
existing design methodologies are effective in their own
best suited cases, but are ineffective (sometimes rather
harmful) for other cases, so their applicable ranges are
restricted. On the contrary, by the methodology in-
troduced here, a whole problem is divided into sets of
functionally independent parts, and the best suited design
method is selectively utilized for each part. Thus, the
methodology is widely applicable from system programs
to application programs.

According to the methodology, a large number of
interrelations among components are specified during the
refinement steps. Such information is effectively utilized
in maintenance and modification phases, as well as in the
development phase. However, in large scale software
design, if this information is managed in the form of
hand written documents, it is very hard to modify the
documents along the design change. Also, laborious
efforts are required to find any desired bit of information
in the huge amount of documents, in order to validate
the interrelations or to trace the modification effect.
This secems to be one reason for the fact that many
conventional design documents, with a large number of
pages, have been rather useless, considering the huge
amount of manpower needed for writing them.

Instead of document management by hand, a system
with design information management facilities, using a
design data base, also with design validation and docu-
ment generation facilities, has been developed by the
authors. Recently, similar objective support systems for
requirements specification and/or design documentations
have been proposed, e.g., ISDOS[2], REVS[3], and SSD
[4). The system described here consists of a design
language and its processor tailored for supporting, and
also enforcing, practical utilization of the design method-
ology. The language is aimed mainly at the formal
representation of modularization design results, based
on the methodology. To gain wide applicabilities, the
language is independently designed from any programm-
ing languages. The processor provides facilities to:
store the information described in the language in the
design database, analyze interrelations among com-
ponents using the database, and generate design docu-
ments supporting the methodology utilization.

The language and its processor have been developed as
one of the subsystems of a total system SDMS (Software
Development and Maintenance System) [S], which aims
to support throughout the software life cycle using new
methodologies and tools.

A new design methodology is introduced in Sec. 2.
The design language and its processor are described in
Sec. 3 and 4, respectively. Sec. 5 outlines programming
tool features for realizing a system designed on the
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methodology in conventional programming languages,
FORTRAN and COBOL.

2. Design Methodology

At first, problems in modularization design methods,
using only a data flow or a control flow, are discussed.
Then a new design methodology unifying those two is
introduced.

2.1 Data Flow vs. Control Flow

Most processes in computer applications deal with
sequential data streams, e.g., sequential files, line
printers and communication line data, as their input and
output data. In this case, a system is often designed as a
combination of stepwise data transformers from input
to output data, as shown in Fig. 1. Such modularization
has commonly been used in conventional business ap-
plication systems, where intermediate data, transfor-
mers and their combinations are realized, respectively,
by sequential files, executable programs and job control
descriptions. These systems are easy to understand and
also to modify. However, they often tend to be so
inefficient, according to the work files usage, as to be
useless. To avoid the inefficiency, a control flow
modularization may be used, where each transformer is
realized as a routine and data transfer is implemented by
routine call with parameters. However, this control flow
modularization often introduces rather complicated
control structure incongruent with the data sequence
structure, as discussed below.

Consider, for instance, a control flow modularization
in Fig. 2 being a transformation result from data flow in
Fig. 1. In Fig. 2, main routine P} and subroutines P},
P; and P, are resulting transformations of processes P,
P,, P, and P, in Fig. 1, respectively. Also, D}, D} and
D} represent passing data elements accompanied with
corresponding routine calls. Consider that the D,

Fig. 1 Data flow modularization.
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Fig. 2 Transformation of figure 1 to control flow
modularization.
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sequence structure, from producer P,’s viewpoint, is a
stream of logical units, each of which consists of one x
record followed by a variable number of y records. In
this case, the program structure of P, in Fig. 1 can be
represented, independently from how to receive D, by
P;, along the data structure as shown in Fig. 3(a). On
the other hand, consider also that P; in Fig. 2 desires to
process x or y records, obtained by P} call, independently
from the above mentioned D, structure. In order that a
unit process for generating one logical unit of D, should
be performed through a series of Pj calls, the P] execu-
tion to produce x or y records needs to be selected, at
each call, according to the last returning state.

This causes the P{ program structure to be rather com-
plex and incongruent with the D, sequence structure,
because a unit process is forced to be scattered over the
program,* as shown in Fig. 3(b) [6].

In this case, the data transformers and the intermediate
data can be realized as processes and message buffers,**
respectively, to eliminate the inefficiency by the work files
usage and also to keep the understandability of the
control structure. Since, in Fig. 1, there are no require-
ments to wait for the P, execution until all D, and D,
data elements are completely provided, D, and D, can
be realized as message buffers, instead of work files,
with no effects on the final results. This enables the
programmer to utilize such a simple modularization
method with file interface data in system programs
without any inefficiencies. Such modularization, where
processes are connected through message buffers, is
called a data flow based modularization.

On the other hand, as shown in Fig. 4(a), consider that
input and output data structures are matched together,
and each mapping between corresponding input and
output parts can be determined by the category of the
parts.*** The control flow modularization, as illustrated
in Fig. 4(b), can be suitably adapted now, where the
main routine C decides the category of data parts to
call corresponding mapping routines P, P, and P;.

This problem is also solvable with data flow based
modularization, as shown in Fig. 5. In the figure, process
C, divides input streem I according to the category of
its parts. Processes P,, P, and P; transform each category
of input to corresponding output. Process C, merges the

*In Jackson’s design method [7], the problem in which the
input and output data structures are incongruent is recognized as
“structure clash”, and an intermediate data, such as D,, is intro-
duced to solve the problem. Also, the transformation from P; to
P} is called “‘program inversion”. The program inversion becomes
rather complicated, when the program to be inverted is large and
is realized by a number of routines (refer to chapters 7 to 9 in
Reference [7]).

**Message buffer is used for communication of two processes
executed in parallel. It consists of a FIFO (first-in first-out) message
queue with bounded capacity. When process attempts to write a
message into a full queue (or read a message from an empty queue),
the process is blocked until the queue is not full (or is not empty)
[8].
***In Jackson’s design method [7], this case corresponds to the
problem with input and output data structures matching (refer
to Chapter 4 in Reference [7]).
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Fig. 5 Transformation of figure 4 to data flow modularization.

outputs of the transformers to produce final output
stream O. However, in addition to these major data
streams another control data stream D is necessary from
C, to C, to inform the input data sequence used for
deciding output data sequence. In Fig. 4(b), the main
routine C is considered to correspond to a combination
of C, and C,, so such an extra control data stream D
is not needed.
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In general, much usage of control variables for
controlling the execution sequence for conventional
sequential programs causes complex and hard to vary
programs. A similar problem will occur in data flow
based modularization, when extra data, other than major
data to be processed, are introduced. The data flow
programs described by Dennis [1] seems to be rather
complicated with excessive control data and gate
processes. When control flow is used in the case where
data flow is more suitable, and vice versa, it can be said
that the complexities are always caused by introducing
extra control data.

2.2 Unifying Data Flow and Control Flow

Application of the best suited modularization method
for each scene, with minimal extra control data, is desired
to create understandable and flexible system structures
for obtaining high reliability and maintainability. For
this purpose, a design methodology unifying data flow
and control flow with no confusion is introduced here-
after.

For instance, consider the stepwise refinement steps of
data transformer system P in Fig. 6(a), from input I to
output O (shown in (1) in the figure). In the figure, (2)
shows a refinement of P with intermediate data D (data
flow decomposition), (3) shows a refinement of P, with
respect to the semantic structures of I and D (control
flow decomposition), (4) shows a refinement of Py,
concerned with the more detailed data structures (control
flow decomposition) and (5) shows a refinement of P,,
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Fig. 6 Integration of data flow and control flow.
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introducing intermediate data IM,; and IM, (data flow
decomposition). These refinement steps may be further
continued. The system construction for P can be
represented hierarchically as illustrated in Fig. 6(b),
where C, and C,, are simple main routines for P, and
P,,, respectively.

The above refinement steps are generalized as follow:

(1) Taking note of major input and output data for a
system, define the outlines of their data structure.

(2) Consider the correspondence between the input
and the output data structure defined in (1).

(a) If these two structures correspond to each
other, decompose the system into control
flow reflecting the data structures.

(b) Otherwise, introduce intermediate data
streams to make correspondences from input
to output stepwise, and decompose the
system into data flow with these intermediate
data.

(3) For each component obtained through decom-
positions in (2), repeat (1) and (2) until the data
structures are defined in detail and the component
function seems to be realized by a simple and
small program.

The components hierarchy obtained through these
refinement steps represents inclusion relations for
functions. In step (2), a component of the control flow
decomposition in (a) is called routine, while a com-
ponent of the data flow decomposition in (b) is called
process. In the refinement steps, one can refine a com-
ponent, whether it is a routine or a process, as either a
control flow or a data flow, according to its input and
output data structure views.

Thus, a control flow component, i.e., routine, may be
realized as a data flow decomposition, as P;, in
Fig. 6(b). This requires localized data flow linkage
mechanism, as will be described in Sec. 5, which is
not sufficiently implemented in any existing data flow
mechanisms, e.g., PORT [9] and DSLM [10].

Beside routine and process components, so called
encapsulation modules can be used for applying the data
abstraction or information hiding concept [11] in use
of non-sequential data, such as table and stack. The
encapsulation module component in control flow is
called group [12] and the one in data flow is called
monitor [8], where a number of operations with common
resources are integrated into one component to hide
implementation details from users of the component.
This enables utilizing the data abstraction methodology
with the control flow and data flow based modulariza-
tion methodology, enforcing each advantageous feature.

2.3 Rules for Data Flow and Control Flow Unification

In the prescribed data flow and control flow unification
method based on the components functional hierarchy,
one can use either a data flow or a control flow, but not
both, at each refinement step. So, each method is applic-
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able with no confusions, retaining individual under-
standability.

To make data flow applications easier to understand,
the following restrictions for message buffer usages are
introduced:

(1) For each message buffer, there is only one
producer process sending data, and only one
consumer process receiving data.

(2) There is no way an individual process can directly
know whether a message buffer is empty or full.
That is, there are only two operations, ‘“‘send”
and “receive,” provided for accessing the message
buffer. The process is always blocked when it
attempts to execute receive (send) operation on
an empty (full) buffer.

By these two restrictions, the data flow system function
is guaranteed to be determined independently from the
process scheduling method [13].

For component decompositions in the methodology,
the following four rules are offered to guarantee unifica-
tion method consistency;

(1) If a data flow connection component C is refined
as data flow decomposition, each message buffer
accessed by C is accessed by only one internal
component (internal process) of C.

(2) If a data flow connection component C is refined
as control flow decomposition, any message
buffers accessed by C can be accessed by any
number of internal components of C.

In (1) and (2), message buffer access method (send or
receive) by internal component must be the same as the
method by C (e.g., a message buffer sent by C can only
be sent by internal component of C).

(3) If a control flow connection component C is
refined as data flow decomposition, each routine
or operation for the encapsulation module called
by C is called by only one internal component
of C.

(4) If a control flow connection component C is
refined as control flow decomposition, any
routines or operations called by C can be called
by any number of internal components of C.

The above (1) and (3) are necessary to guarantee the
functional determinancy of the whole system. That is,
the system function is determined independently from
the process scheduling method.

If no real parallel executions are performed, and a
routine or an operation called by C is functional with no
internal states kept, restriction (3) can be removed. That
is, the routine or the operation can be called by any
number of internal processes of C.

As in (2), when the message buffer is accessed from
conventional sequential processing routines, the message
buffer can be treated like a conventional sequential file.
This enables designers and programmers, who have
been used to designing conventional sequential programs,
to easily utilize message buffers.
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3. Design Language

Design language performs important roles, not only
for uniformly representing design results, but also for
guiding design considerations, and for enforcing design
standardization. Design language SDL (system design
language), described here, is a language for entering
various kinds of design information, mainly the com-
ponent decomposition results based on the prescribed
design methodology, into a design database. Since
readable design documents and many interrelated bits of
design information can be automatically generated by the
language processor, SDL is rather concerned with
writability and avoiding duplicate description. The
following describes specific SDL features.

3.1 Component

According to the methodology in Sec. 2, design proceads
mainly along stepwise component decom} © In
SDL, each component is described as a desiy crip-
tion unit. A component represents a part of . system
with functionally classified features. An entire system
can also be seen as a component. In component
hierarchy, a component is said to be nonprimitive if
it is realized as a combination of its components. Other-
wise, it is a primitive. The parent-child relations are
defined as conventional in component hierarchy. Thus,
a primitive component can be said to be a component
having no children.

In the programming stage, a primitive component
corresponds to a program module, while a nonprimitive
component at most corresponds to a part of linkage
control description. However, in the design stage, a
nonprimitive component description in SDL. has more
important roles than a primitive component. It can be
said that nonprimitive components represent the
classification of the final program modules according
to functional hierarchy.

There are six component types. Four of them have
already been denoted in Sec. 2, i.e., routine (providing
conventional subroutine facility), process (being a
parallel processing unit), group (representing abstract
data or machine) and monitor (representing commonly
used abstract data among processes). In addition to
these component types, root and dara component types
are also prepared in SDL. Root component is a topmost
component in components hierarchy of a system, which
describes the connections method between the entire
system to be designed and its environments. Data
component represents concrete data area in memory,
files and databases, commonly used from other com-
ponents.

These six component types indicate the component
functional features, and are independent from their
realization methods, such as primitive or nonprimitive.
Figure 7 illustrates a component hierarchy example in
SDL, where components S, S,, S,, S;, S;;, S;; and
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Fig. 7 Components hierarchy in SDL.

other have their own description units.

3.2 Component Description

The design description in SDL consists of a number of
statements, each with a statement header word beginning
with “$” character. A component description unit is
enclosed by a header statement with header word denot-
ing its component type (i.e., $PROCESS, SROUTINE
etc.) and an end statement, i.e., $SEND. A header
statement contains a wunit name (unique in the whole
system) for managing the description unit, and com-
ponent name (unique in a set of components of a decom-
position) for representing its function. In a large system
developed by many designers and programmers, these
two names are necessary to identify a component from
managerial and functional viewpoints.

The component description body is divided into the
following two divisions:

* External specification division, consisting of discrip-
tions necessary for the use of the component, e.g.,
function description, parameter specification, input
and output conditions etc.

* Internal specification division, consisting of its
internal structure descriptions necessary to imple-
ment the component, e.g., its internal (child) com-
ponents declarations, the connection method among
the internal components etc.

Figure 8 illustrates a skeleton of a process component
description. Table 1 shows an SDL statements list
classified in the above two divisions. In Table 1, the
statements with asterisk mark (*) are composed by
narrative descriptions, with or without reserved words,
such as IN (input), OUT (output) and ABT (abort)
words of $COND (condition) statement, to indicate
their contents. In SDL, since in the narrative, informal
descriptions are classified according to their contents or

SFROCESS  wnik mome ! G Ponesd name

SEXTSPEC

[omps stemad spsificioma |
SINTSPEC
) ot intermal fusificinm |
$END
Fig. 8 Process component description skeleton.
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Table 1 SDL statements list.

Statement Header Statement Contents

External Specifications

$ FUNCTION* component function description.

$ KEY key words and key phrases.

$ PARM parameter specification (in/out,
type, meaning etc.).

$ OPER operation specification (O/V/OV
type, operation parameter spec,
function, effect description etc.).

$ SYSPARM system integration parameter
declaration (e.g., table size).

$ SYSENV system environment (interfaces
between system and operating
system or hardware) declaration.

$ COND* input output condition
description.

$ EXAMPLE* example descriptions for usage

or dynamic behavior.
$ PERFORMANCE* performance specification.

Internal Specifications

$ CONV* convention declaration (naming
rule, message form etc.).

$ SYNONYM synonym difinition.

$ TYPE data type definition (similar to
PASCAL).

$ VAR common variable declaration.

$ MB message buffer declaration.

$ FILE file declaration.

$ ICOMP internal (child) component
declaration.

$ CONNECT inter-components relation
definition.

$ ASSERT* general condition to be satisfied

in all internal components.

$ ALGORITHM* outline algorithm description.

(*: Statement contents are informal narrative description)
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meanings, the language itself can be used as a check
list for design documentation. The processor can provide
the automatic design document generators classified by
contents, e.g., performance specification generator in
a set of components. Figure 9 shows a component des-
cription example in SDL.

3.3 Inter-component Relation Description

One of the most important features of SDL appears
in inter-component relations description in a
$CONNECT statement. By the methodology shown in
Sec. 2, the relations between a component C and its
environments are determined for a time when C is
recognized as a component of its parent, that is, when
internal structure of C’s parent is designed. For instance,
consider component S,, in Fig. 7. It is called by S,,,
reads input file and calls S, 4. Such relations between S,
and its environment are determined when S,,’s parent
S, is designed as a control flow decomposition. In SDL,
these relations (except parameter specifications) are
described in S, internal specification, not in S, external
specification. In conventional design documents, these
relations are described as S,;,’s interface information
in S;,’s own description unit. However, such interface
information can be automatically selected from its
parent description, and such conventional design docu-
ments can be automatically generated by SDL processor.
This enables minimizing the amount of design descrip-
tions which must be entered into the design database.

There are two kinds of interrelations among com-
ponents:

(1) Routine and operation call relations.

(2) Data and message buffer access relations.

These relations are uniformly represented by a series of
statements with the following syntax form;

{subject) {verb) {object 1) [TO (object 2]
[IF {condition description)],

where [—] denotes the optional clause. Statements are
delimited by semicolon (;). (Subject) is a unit name of
an internal component. {Verb) denotes the relation
category, such as CALL (routine or operation call),
SND/RCV (send/receive message buffer), RD/WT
(read/write file), CPY (copy data value), and so on.
{Object 1) and (Object 2) represent components or
data which are related to {subject) in {verb) relation.
The “TO {object 2)” clause is necessary for CPY verb.

If the CALL verb object is group or monitor operation,
a set of operations of a group or monior called by the
subject component can be represented, with the group
or monitor component unit name, as follows:

Ul CALL GI1/(OP1, OP2, OP3).

This denotes that Ul calls operations OP1, OP2 and OP3
of group or monitor Gl. For data object, ““/”’ can be
used to restrict the part of the data area to be accessed,
as follows:

Ul REF DI1/PARTI.
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This means that Ul refers only to PART1 in D1. Also,
to represent the dynamic accessing methods for file and
and message buffer, the restriction in data contents to
be processed can be described as value class description.
For instance,

Ul WT F1 {page header};
U2 WT F1 {page body}

says that Ul and U2 write page header part and page
body part of file F1, respectively. The IF clause in the
syntax form can be used to describe the condition for
the verb, such as:

Ul CALL U99 IF {database overflow occurs}.

Figare 10 illustrates examples of inter-component
relation description in SDL.

These inter-component relationships represent the
static configuration of a system. To understand the
system structure more completely, the dynamic con-
figuration information may also be necessary in some
cases. For example, when a number of routines are
called and a number of data are accessed by a component,
the execution order for the routine calls and the data
accesses in the component may become dynamic con-
figuration information, which is sometimes necessary
to understand the system structure in more detail. A
program list can be considered as a complete description
of such dynamic behavior.

However, these dynamic behavior descriptions are
excluded from SCONNECT statement description, for
two reasons. They are:

() The dynamic behavior in most cases can be

easily presumed from the component function
and inter-component relationship descriptions.

M1 Aﬂ
SO e o oL
T
foxs RN P |--r X3
~ 5]
e Sar TN S
$CONNEZT

FL RD IL; P4 wT OL)
P4 SND M1, M2

P2 RSV M1 P2 SND M3
P32 RV M2 P3 SND M%)
P4 Rev M3, M4

(a) $ CONNECT statemen texample for data flow.

[ ]
o4
R _ e
B [
SCONNEST

R1 CALL R2 IF {---F;
R1 CALL R3 IF {--};
2 cALL gtL/cPt;

R3 CALL G1/0P2;

Rz SET D ; R3IREF D,
RS WT 01~

(b) $ CONNECT statementexample for control flow.

Fig. 10 Inter-component relationship.
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(b) The detailed dynamic behavior in most cases
should be concerned in the programming stage,
not in the design stage.

The value class description and if clause in SCONNECT
statement, expressed before, are considered as com-
pensations for the lack of dynamic behavior descriptions.
More detailed dynamic behavior is described in
SALGORITHM statement, if necessary, in narrative
form.

3.4 Value History Description

It is very important to grasp the meaning of data
contents which will be processed, in order to under-
stand the component function and its processing manner.
For file or message buffer, the contents of each data
element (data for one record in the file) are insufficient,
but the contents of a whole data stream is rather im-
portant, to understand the meaning of data.

In SDL, a value history concept is introduced to
represent the data stream contents produced and con-
sumed by components. The value history is a description
of data streams, which are possibly produced or can be
consumed by components, in regular expression or BNF
expression form, like formal language grammar. The
value history for one file or message buffer is divided into
two categories; the description from the producer’s
viewpoint and the description from the consumer’s
viewpoint.

For example, message buffer M1 is declared with value
history descriptions, as follows;

$MB M1: CHAR
VHP {MI=line* eof, line=char* eol, char=
nonb | bk}
VHC {M1=(word | blks)* eof, word=nonb"*,
blks=(blk | eol)*},

where, “CHAR” denotes M1’s element data type, and
descriptions enclosed by { } followed by VHP and
VHC represent value histories from a producer’s view-
point and from a consumer’s viewpoint, respectively.
When VHP and VHC descriptions are not distinguished,
VH is used to identify the value history.

4. Design Language Processor

A design language processor facilitates entering design
descriptions into design database, analyzing overall
design consistency and acquiring a variety of design
information from the database.

The processor consists of the following four parts:

(1) Design database: maintaining the design descrip-
tions with relational form.

(2) SDL editor: facilitating entering design descrip-
tions into the database, modifying and deleting
the database contents.

(3) SDL analyzer: analyzing overall design con-
sistency and completeness on the design database.
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(4) SDL reporter: reporting a variety of design
documents, and retrieving bits of design infor-
mation from the design database.

The processor organization is shown in Fig. 11.

Although SDL includes many informal narrative
statements, these statements could be represented with
unified and formal description, depending upon the
problem areas or projects. Therefore, the processor is
constructed as expandable so that analyzers for newly
introduced formal description can be easily added. In
this section, only fundamental processor functions are
described.

4.1 SDL Editor

The SDL editor analyzes syntax and semantics of
design descriptions written in SDL, then enters the
descriptions, if no errors exist, into the design database.
It also facilitates updating and deleting the design
database contents.

These editing actions can be accomplished for the
following units:

(1) Component: identifying a unit name (or a set of
unit names) for a component (components),
entry, replacement, deletion or print of the
component description will be performed.

(2) Statement: identifying a unit name (or a set of
unit names) for a component (components) and
a statement header word (or a set of statement
header words), entry, replacement, deletion or
print of the statement descriptions will be per-
formed.

(3) Data: identifying a data name or a set of data
names and the name scope, if the data name is
not unique, the data definition will be modified.
This case differs from (2) in that the modification
object is indicated only by the data name without
identifying the data defining component.

So, unlike usual text editors, SDL editor makes it
possible to edit according to the language syntax.

Design information is maintained in a form with inter
component relations in the design database. Thus, a
modification in a part of the design automatically
causes modifications in the related items. For instance,
deleting a component from the database causes an
effect to delete the component from the internal com-
ponent declaration statement in its parent component.
This assures overall design consistency among com-
ponents.
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Fig. 12 Restriction for inter-component relationship.

4.2 SDL Analyzer

The SDL analyzer mainly analyzes consistency and
completeness of inter component relationships. Usually,
errors in inter component relationships are more difficult
to detect and correct, and require more effort, in a later
development phase. The analyzer detects these errors
earlier in validating consistency of the design information
in the design database.

As an example, validating checks on access right of
component to its external resources are illustrated.
Assume that, as shown in Fig. 12, component S, in-
cludes component S,, S, includes S;, and operations of
external group G are called from S;, S, and S;. Since
S, and S; can not access beyond the rights permitted
for S, and S,, respectively, for operations sets O,, O,
and O; of G that are accessible from S1, S, and S,
respectively, the relationship

0,20,20,
should be held. For data accessing, similar access right
is checked.

4.3 SDL Reporter

Although design information is mainly entered in a
unit of a component or a statement into the design
database using SDL editor, design results retrieval and
output of a variety of design documents are mainly
performed among more than one component using SDL
reporter.

To restrict the component domain to be operated by
the reporter, a set of components is specified by com-
bining component inclusion relationship and many
kinds of component conditions. For example, the follow-
ing conditions:

UN=A>X, Y- inclusion relation specification by

unit name.

CT=ROUTINE- - -component type identification.

MID=SHIGO- - - designer identification.

KEY =“SDL”, “DATAFLOW”- - - key words

identification.

designate a set of routine components that are successors
of component A, except successors of X and Y (hashed
area in Fig. 13), whose designer is “SHIGO,” and for
which “SDL” and “DATAFLOW?” are described as key
words.

For the components designated above, the following
documents can be reported:

* Component summary.
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Fig. 13 Components set representation.

* Detailed design reports, including related external
information.

* A list of component interfaces.

* A list of performance specifications.

Also, concerning inter-component relationship informa-
tion, the following documents can be reported:

* System organization diagram showing component
inclusion relationships.

* Module call hierarchy diagram and data flow
diagram showing module interconnection relation-
ships.

* A list of data access cross references.

* A list of routine and operation call cross references.

In addition to these batch outputs, many kinds of

functions to retrieve bits of design information are
provided. Moreover, since the results of these functions
are usable as command parameters of SDL editor and
SDL reporter, elaborated design supports, combining
report generating functions and editing functions, may
be provided.

5. Data Flow Mechanisms in FORTRAN and COBOL

To realize a system designed on the preseribed
methodology as conventional sequential programs, how
to realize inter processes connection with message
buffers is a problem. For this, the authors have developed
a message buffer simulating mechanism so that message
buffers are easily used in conventional FORTRAN and
COBOL [14]. Here, taking FORTRAN as an example,
its function is briefly described.

A component S is assumed, as in Fig. 14(a), to be
realized by a data flow decomposition connecting inter
processes S;, S,, S; and S, by message buffers M,;, M,
and M,;. In this instance, it makes no difference whether
S is a process or a routine, and whether S, S,, S; and
S, are primitives or nonprimitives. For this case, the
aspect of inner components connection in S should
be declared as shown in Fig. 14(b). Processing the
declaration statements generates a DF (data flow) table
for S. Combining this DF table and a simple scheduler
program (about two hundred codes in an assembly
language) with object programs of processes S;, S;, S3
and S,, an executable program of S is obtained (Fig. 15).

Operations on message buffers will be accomplished
by CALL statements in FORTRAN. For instance, to
send data into M,, write
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CALL MPUT (M,, d)
and, to receive a data from M, into x, write
CALL MGET (M,, x, isend).

here, “isend” is a variable to be noted as the end of a
data stream.

In executing these operations, the scheduler program
controls data passing timing among processes, using the
DF table for S. For instance, when executing “CALL
MPUT (M, d)” in S, if the buffer M, is full, then the
address of the successor statement of the CALL state-
ment (i.e. reexecution address) together with the status
wait for S, are written into DF table for S and the
control is transfered to execute a ready process, say S;.
Also, in executing “CALL MGET (M,, x, isend)” in
Ss, S, is set to ready status.

Assigning a DF table as described for each component
to realize with a data flow, local execution management
is possible. Hence, a hierarchically constructed system
with a combination of control flows and data flows, as
noted in the design methodology in Sec. 2.2, is easily
realizable in FORTRAN and COBOL.

6. Conclusion

A new modularization design methodology, which
unifies data flow method based on concepts of con-
current processes or message buffers and control flow
method based on traditional caller-callee relationship,
a design language and its processor to enforce the meth-

) of nessage duller.
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odology, and a simple mechanism to write programs in
a natural way for the design result, are described.

Although intermediate data decision criteria in the
data flow decomposition and a design method in use of
non-sequential bulk data, such as database, are left to
further research, the methodology including consistently
a variety of existing design methodologies (e.g., Jackson
method [7], Warnier method [15], Parnas’s modulariza-
tion [11], data flow decompositions by Morrison [10],
etc.) and systematically integrating them has a wide
range applicability. Also, due to the new methodology,
in the process of hierarchical components decomposition,
one can select in best suited scene for each methodology
and utilize that methodology that is most effective.

Using the design language and its processor oriented
to the design methodology, designers can enter only the
minimum necessary information into the design database,
and from it analyze the developing target system from
many viewpoints. The design system has been imple-
mented on NEC’s operating system ACOS-6 in time
sharing mode to be used interactively. Its effectiveness
will be further evaluated through application to actual
software developments.

The unification technique for data flow and control
flow described in this paper will not only be applicable
to software developments, but will also act as a guide
line in new computer architecture research to utilize
advantageous features of both traditional sequential
machines and topical data flow machines, with attention
to their duality.
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