A Binary Tree Multiprocessor: CORAL

YosHizo TAKAHASHI,* NAOKI WAKABAYASHI*
and YOSHIHIRO NOBUTOMO*

A feasible architecture for a highly parallel processing system which consists of 100 or more processors is
studied. The commonly used shared data system in which a shared store is connected directly to the multiple
of processors is inapplicable when the number of the processors is very large. An alternative system is the
distributed data system in which the processors are loosely connected and the data are distributed to the
processors prior to the processing. In this system the time to distribute the data and the time consumed in
the inter-processor communications deteriorate the speed-up ratio. After various connections of the distrib-
uted data system, including star, chain, loop, lattice, and binary tree, were studied, it was revealed that the
binary tree connection has the best performance. This binary tree multiprocessor is named CORAL. An
algorithm to handle the inter-processor communications in the CORAL is developed. As possible applications
of the CORAL, the parallel solutions of partial differential equations in one-dimensional heat conduction
problem and the potential problem are studied. A prototype of CORAL consisting of seven microcomputers

is described.

1. Introduction

There are two distinct methods in constructing a
MIMD type parallel processing system. They are
1) the method in which the processors fetch data from
a shared store when they are needed, and
2) the method in which data are distributed to the
processors prior to the processing.

In a system constructed with the first method, which
we call a shared data system, the access contention at the
shared store deteriorates the processing speed. In a
system constructed with the latter method, which we call
a distributed data system, the time to distribute data is
added to the processing time despite of avoiding con-
tention. In a highly parallel processing system which
consists of 100 or more processors, the shared data
system is unfeasible. To our knowledge, the largest
number of the processors in existing shared data systems
is 16 [1]. In Chapter 2 we derive the speed-up ratios,
data broadcasting times, and the average path lengths
of various distributed data systems, and conclude that
the binary tree distributed data system has a comparable
speed-up ratio to the shared data system and has many
favorable characteristics. The binary tree multiprocessor
is named CORAL and its architecture is defined in
Chapter 3. In Chapter 4 the solution of the partial differ-
ential equations in heat conduction and potential prob-
lems by CORAL is investigated. Chapter 5 describes the
prototype of CORAL presently being developed at the
Tokushima University.

*Tokushima University, Tokushima, Japan.

Journal of Information Processing, Vol. 3, No. 4, 1981

2. Shared Data System Versus Distributed Data System

2.1 Shared Data System

In the shared data system, more than one working
processors (WP) [1] are connected to a shared store as
shown in Fig. 1. We denote the processing time of the
system with » WPs by ¢,, then

t,=‘n—‘+f(n).)

That is, the processing time with n processors is one nth
of that with one processor plus the overhead time f(n)
caused by the access contention for the shared store.
The speed-up ratio s is obtained by

R0} @

To make it simpler, the D/D/1 model is assumed to
evaluate f(n). Let the number of data being processed
be M, the time to access a data in the shared store be d,
and the time to process a data be 7. We also introduce n,
which is

ny= 'Z{: 3)

It is then concluded that:

Shared Store

Fig.1 Shared data system.

A Binary Tree Multiprocessor: CORAL

(i) For n<n,, the contention does not yet take place so
that the waiting time to access a data in the shared store
is d. As each one of the processors processes M/n data,
t, is obtained by

M t
t,=—(T+d)=-.
v (T+d)=~)
(i) For n>n,, the wait time increases to (n—ny+ 1)d
due to the contention. ¢, and s are obtained by

M 1
1= o (T+(n—ng)d) = = Md.)
n n
T+d n ny+l
S R S ©

The speed-up ratio versus the number of processors is
shown in Fig. 2. The upper bound of the speed-up ratio
is (no+1).

As shown in Fig. 2, the increase of the number of the
processors beyond n, does not much improve the speed-
up ratio.

2.2 Distributed Data System

In the distributed data system, data are distributed to
all working processors by the control processor (CP) prior
to the processing. The time to distribute data depends
on the connection of the processors in the system.
Although certain time is required to deliver the calculated
results back to CP, it is taken into account in the data
distribution time. We will study the data distribution
times and the speed-up ratios of the distributed data
systems of different connections.

(i) Star Connection (Fig. 3)

In star connection, CP passes data to WP,, WP,, . . .,
WP, successively. Let the time to pass a data to WP be d,
then the time until all WPs receive their data becomes
n(M/n)d. The processing time of the system with n
WPs is the time which the last WP receives the data and
processes them. That is;

t,= —if T+ Md.)

0 S gy,

n
AR S

0 n

1

'

'

'

j
n

0

Fig. 2 Speed-up ratio of shared data system.

(o) (o)
CaOwm®
OO

Fig. 3 Star connection.

231

The speed-up ratio is then,
M(T+d) ny+1
S= 7T N “nern™
M (; +d> 0

Note that s is limited by (n, + 1) which is identical to the
shared data system, although the saturation takes place
much slower. This is observed in Fig. 9 which follows.
(ii) Chain Connection (Fig. 4)

In chain connection, CP sends data to WP, which
passes them to the next WP except those addressed to
itself. The next WP passes the received data to the next
one until the last WP receives the data. When CP sends
data in an order of WP,, WP,_,, ..., WP,, WP,, the
time until all WPs receive data is the least, which is

®

(2"’,——_1—) Md=2Md.
t, and s are then
T
t,,=M(; +2d))
_notl
s= no+2nn' (10)

The upper bound of s is (n,+ 1)/2, which is one half of
that of the star connection.
(iii) Loop Connection (Fig. 5)

In loop connection, CP sends data in both directions
alternatively. The time until all WPs receives data is
2(n[2)(M[n)d= Md. t, and s are the same to those of the
star connection.

(iv) Lattice Connection (Fig. 6)

In lattice connection, WPs are connected in a matrix
with m rows and k columns. CP, which is connected to a
WP at one of the corners, distributes all data to this WP
which passes them to the other WPs at the top of each

O—O—o -6

Fig. 4 Chain connection.

€)

Fig. 5 Loop connection.

Fig. 6 Lattice connection.

232

column. These WPs then send data to the WPs belonging
to their columns. The time until when all WPs receive
their data is

((Zk—l)—kk!+2(M—-1),%>d'=.2M(l+l%>d.

t, and s are then

M 1
=7T+2M(1+E)d, (€0))
M(T+d) n(ny+1)
5= = . 12)
%’T+2M<1+%)d o2

s is bounded by (n, + 1)/2 which is the same to the chain
connection.
(v) Binary Tree Connection (Fig. 7)

In binary tree connection, CP sends data in a sequence
so arranged that all WPs are always ready to receive data
when they are sent. In the connection of Fig. 7, this
sequence may be 3-5-4-6-1-2 as described in Fig. 8.
The time when all WPs receive data is n(M/n)d=Md
which is the same as that of the star connection. ¢, and s
are also the same as the star connection.

In Fig. 9, the speed-up ratios of various connections
are plotted against the number of the working processors.

2.3 Broadcasting Time of Data

In the previous discussions, the data are assumed
different for individual WPs. It is, however, probable
that the WPs use some common data. The common data

Q
@ @

ONCENCI®

Fig. 7 Binary tree connection.

send

e [3 5 a6l 121

receive
send

5]
T, s8] 2T

receive

Fig. 8 Time chart.

shared data
T star,tree,lo0op

'
{e— chain
Tattice

Fig. 9 Speed-up ratio comparison.

Y. TAKAHASHI, N. WAKABAYASHI and Y. NOBUTOMO

g
S 20db--- -
Z Jattice |
= H
+ 1
s ' t
L 10df- e H-
b4 ! binary tree
s i
= 1

i

1

i

=

=}
|
=
P
O

Fig. 10 Broadcasting time comparison.

are broadcasted from CP to WP by routing. Therefore
the distribution time of the common data is much less
than that of the individual data. The broadcasting times
of the common data in various connections are obtained
as follow.

(i) Star nd (13)
(i) Chain nd (14)
(iii) Loop ndf2 (15)
(iv) Lattice (m+k)d (16)
(v) Binary Tree 2(log,(n+2)—1)d an

These are plotted against » in Fig. 10 which reveals that
the binary tree connection has the least broadcasting
time when # is large.

2.4 Average Path Length

In a distributed data system the interprocessor com-
munication is performed by exchanging messages
between processors. The average distance between two
processors of the system affects the efficiency of the
interprocessor communication and the speed-up ratio
in the consequence. The average path length is defined as
the summation of the length of paths between all pairs
of the processors divided by the number of all pairs of
the processors. The average path lengths of various
connections are calculated as follow.

(i) Star:
%2'1=2 (18)
(i) Chain:
LG+ .,
n(n—1) 3 a9
(iii) Loop:
—2—1 i ——:—1 (n: odd) 0)

@iv) Lattice

km(km_ D “21 ,E, h; gg: (i—jl+lg~ hr)———
€2
(v) Binary Tree:
1 & i +1-i i +1-j
FiEn & (e £)
(L= 24 (L+4)2-!
AR D)

(%)

A Binary Tree Multiprocessor: CORAL

average path length

Fig. 11 Average path length comparison.

where L is the number of levels of a balanced tree.

In Fig. 11 the average path lengths of the various connec-
tions are shown. The binary tree connection indicates an
excellent performance when 7 is large.

2.5 Parallel Processings in Distributed Data Systems

The distributed data system consists of a CP and a set
of WPs. The CP distributes data and program to WPs
and collects the result of computation. The distributed
data and programs are confined in the packets called
job packet which we denote by

jobpladdress, program, data)

where address is the identifier of the WP which processes
program with data. The obtained result is returned to the
CP in a form of an answer packet as denoted by

anspladdress, result].

The address is always that of the CP. Other packets
called data packets are transmitted between WPs which
we denote by

datap[address, data)

where data may include interprocessor messages.

The roles of the CP are, to split a job into job packets,
to distribute them to WPs, and to collect the answer
packets. Data packets are transmitted between WPs in
the course of the processing. In the binary tree connec-
tion, sending job packets downward and answer packets
upward are usual.

Although the general method of decomposing a job
into a set of job packets is not yet established, the data-
flow graph is helpful, through which we can reveal the
data which immediately derive the final result, and also
the data which derive the intermediate data until the
input data are arrived. The nodes of the data-flow graph
denote the data and the edges denote the processes. For
instance, the calculation of Y !29° a,b, from the input
data a;, b; (i=1, 2, . . ., 1000) is decomposed in a data-
flow graph of Fig. 12. The job packet addressed to WP, is

jobp [i, sum(/, k), (@;,- - -, ax, bj,- - -, b))
where
k=100/, and j=k-99.
Another example is the matrix multiplication problem
of
X=A.B

233

Fig. 12 Data-flow graph of 3 }29° a,b,.

Fig. 13 Data-flow graph of matrix multiplication.

or
Gy %y -X)=A-(5, by --By). (23)

The data-flow graph of this problem is shown in Fig. 13.
The job packet for WP, is

jobp [i, mult(i), (4, 5,)]

where mult(i) is the program to calculate 4 - b, and return

=

X,

3. The Binary Tree Architecture

3.1 CORAL System

The binary tree architecture for highly parallel process-
ing systems has many advantages. Among them are:

(1) The structure is recursive and constructing a
highly parallel processing system including 100 or more
processors is feasible.

(2) The structure of the element processor is simple, as
it needes to provide only three ports for connection.

(3) The broadcasting time of the common data is short.
(4) The distribution time of the data is also short.

(5) The average path length is short especially when the
parallelism is very large.

(6) No shared store is necessary.

After the previous discussions, we arrived at the conclu-
sion that the binary tree is one of the most promising
architecture for implementing a highly parallel processing
system. The binary tree-structured parallel processor of
Fig. 14 is named CORAL.

The processor at the root of the tree of CORAL is
named a root processor (RP), the one at the node a node
processor (NP), and the one at the leaf a leaf processor
(LP). The tree may be either balanced or unbalanced.
Normally RP serves as CP and NP and LP serve as WP.
It is, however, admitted that one of NPs or LPs serves
as CP whenever it is favorable (Fig. 15).

The number of the processors of a balanced CORAL of

234

Fig. 14 CORAL system.

Fig. 15 Unbalanced CORAL system with CP at a leaf.

level L is given by
2L+ 24)
This is shown in Table 1 for different levels. A parallel
processing system of 1000 processors is obtained by
CORAL with only 9 levels.
The NP has three paths which are top, left and right
paths as shown in Fig. 16. They are denoted by T, L,
and R respectively. RP has only L and R paths and LP

has only T path. The processors of CORAL are given
individual addresses. The address of RP is 1 and those of

Table 1 Number of processors of CORAL of different levels.

Level Number of processor
0 1
1 3
2 7
3 15
4 31
5 63
6 127
7 255
8 511
9 1023

10 2047

L:left
Fig. 16 Three paths of node processor.

R:right

Y. TakAHAsHI, N. WAKABAYASHI and Y. NOBUTOMO

Fig. 17 Processor addressing.

other processors are as indicated in Fig. 17.

3.2 Interprocessor Communications in CORAL

The interprocessor communications in CORAL are
performed by exchanging the data packets between
processors. The packet has the destination address which
is referred by RP and NP for the routing of the packets.
The processor which received a packet, checks the desti-
nation address of the packet. If it matches its own
address, the packet is received. If it does not, the destina-
tion address is divided by 2 and the fraction, if any, is
dropped until the resultant address is either less than its
own address, is equal to the address of the left successor
which is twice of its own address, or is equal to the ad-
dress of the right succesor which is twice of its own
address plus 1. In the first case, the packet is sent to path
T, in the second case to path L, and in the last case to
path R. The algorithm of the routing of the packets is
described in a McCarthy’s conditional expression as
follows.

path(@)=[a=s5—-S;a<s—>T;a=2s—L;
a=2s+1-R; t—>path(a/2)] (25)

where a is the destination address, s is the address of the
processor, and S is the path to the processor itself.

4. Applications of CORAL

4.1 Parallel Solution of One-Dimensional Heat Conduc-
tion Problem

The one-dimensional heat conduction problem is
described in the following partial differential equation.

UG 1) _ ,8*Ulx, 1)

Er Fre O<x<a) (26)
Ulx, 0)=f(x), U@©,1)=f(0), Ula,1)=f(a)
By expansion and denoting
r= ,%z , where h= Ail @n
and
U, (m)=U(mh, nk), (28)

the following difference equation is obtained.

A Binary Tree Multiprocessor: CORAL

U,,+,(m)=r[Un(m—l)+ (}-—-2) U,m)+ U,(m+ 1)]
m=1,2,---, M) (29)

When p processors are available, each processor evaluates
s (=M/p) equations of eq. (29). As the processors com-
puting the adjoining regions have to exchange the
boundary values at each interation, the strategy that
those processors be located as near as possible is neces-
sary.

One strategy of allocating the regions to the processors
is thus. The tree is first expanded into a string by a tree
walk as shown in Fig. 18 which contains 9 expanded
nodes. The x-axis is divided into 9 regions and each
of them is assigned to an expanded node as shown in
Fig. 18. In this method, three regions are assigned to
most processors, while only one region is assigned to a
leaf processors. To balance the load of the processors,
the size of the regions may be so adjusted that the total
size of the regions assigned to each processor is the same.

Another strategy of allocation is as follows. We
restrict that only one region is assigned to a processor
and the path length between two processors, to which
the adjoining regions are assigned, is kept as small as
possible. We first divide the x-axis into as many equal
regions as the number of the processors and each region
is assigned to an individual processor. The region as-
signed to RP is so determined that the number of regions
on its left side is equal to that of the processors connected
under the left edge of RP. The number of the regions on
the right side is also equals to that of the processors
connected under the right edge of RP. These regions are
assigned to the processors on the same sides. The right-
most region on the left side is assigned to the NP which is
directly connected to the left edge of RP. The remaining
regions are divided into left and right groups again and
the left one is assigned to the processors connected
under the left edge of the previous NP. In Fig. 19 the
result of allocation for CORAL of level 3 is illustrated.
It is revealed that most of the distance between the
processors which compute the adjoining regions are 2.

The operation of CORAL is as follows. All processors
are WP. When a processor receives from its predecessor
the first and the last mesh points of the regions which are
allocated the processors belonging to this branch, it

node 3 1 2 4 2 5 2 1 3
region T(0) T(1) T(2) T(3) T(4) T(5) T(6) T(7) T(8)

Fig. 18 Tree expansion.

235

region ¢ 1 213 4 5 I 6 (7 8|9 10 11312 13 14
olololo olaoloe O—H-& (WaX
G o710 ulu < ulu o+o161+6—9©
7

~) €————
o
3

0 1 4 5 9 10 13 14

Fig. 19 Results of allocation.

divides the regions into three parts one of which is allo-
cated to itself and the remaining parts are allocated to
the successors. The processor sends the first and the last
mesh points of the regions which are allocated to the
processors under its left and right edges to the successors.
It then calculates the initial values at each mesh point
allocated to it. As a processor proceeds to compute
U,(m) is requires that the boundary values be exchanged
with the processors which are allocated with the adjoin-
ing regions. After n arrives at a predetermined value, the
computed results are sent to RP. The NPs receive the
results which are sent from the lower processors and
forward them to RP. The operation of a NP is illustrated
in the state transition diagram of Fig. 20.

The performance of CORAL is estimated by means of
the computer simulation by obtaining the execution time
of the solution of one dimensional heat conduction
problem. The allocation strategy used in the simulation
is the latter one. The simulated CORAL is the binary
tree unbalanced only at the highest level. RP is used as
CP. The assumed execution time of the element processor
is estimated from that of 8080A.

The results of simulation are shown in Fig. 21 and in
Fig. 22. In Fig. 21, the changes in the number of active
processors versus time are indicated. In the begining
zone where the number of active processors increases
linearly, the allocated regions are broadcasted from RP
to NPs. In the middle zone, the processors compute
U,(m) and exchange boundary values at each time step.
In the last zone, the calculated results are sent back to
RP and NPs perform routing. In Fig. 22, the speed-up
ratio versus the number of processors is indicated.
Although saturation takes place when the number of
processors exceeds 200, speed-up ratio of almost 300 is
obtained when more than 600 processors are used.

receive divide send
region region region
receive
result

Fig. 20 State transition diagram of a node processor.

alculate send
initial boundary
values values

‘ eceive I
calculate boundary
Uy, (m)

values

236

300

RINAVS)

number of processors = 260
number of mesh points =1300
number of steps in time= 4

200

100

——3> number of active processors

0 500 T500 Z000

TOUU
— time (msec)

Fig. 21 Number of active processors versus time.

300 // -
/ X
4 /
° 200
o /
= /
g 100 7
Y / .
v number of mesh points = 1300
1 i
0 20 700 8

~— number of processors

Fig. 22 Speed-up ratio versus number of processors.

4.2 Parallel Solution of Laplace Equation

The numerical solution of the Laplace equation re-
quires iteration unlike the parabolic or hyperbolic partial
differential equation. We will study the parallel solution
of the following Laplace equation of two dimensions.

3U U
2p7— —_
PAU=0 + 57, =0 (30)

The approximate difference equation is
HU=h?B @31

where H is a tridiagonal matrix and B is a boundary
value vector.

Eq. (31) can be solved by the following iterative
equations.

a
U D= GURTY + US4 UD, + UR, 410,

+(1-aUu® (32
For the geometry of Fig. 23, eq. (32) becomes

a
Ui D=2 [UP+ UL + R0, +b,)]+ (1 —a)UP

U D= HUF D+ UP 4 UP 12,1+ (1 - UP
a
Ug™D=2[UE D+ U D+ h(bg +b,) +(1 -) USP

(33)
The data-flow graph of eq. (33) is shown in Fig. 24. As

Y. TAKAHAsHI, N, WAKABAYASHI and Y. NoBuTOMO

b, b, by
1 2 |3
byp by
s |5 |e
b bg
7 is Jo |,
byg 6
by by b,

G S s
Nels

SCRRBRL?

Fig. 24 Data-flow graph for Laplace equation.

the computation should be performed from left to right
serially, it does not very well suit the parallel processing.
To increase the parallelism of computation, we divide
the entire region into three groups of (U,, U,, U,),
(Us, Us, Us), and (U,, Ug, Ug) and assign a processor
to each one of the groups. Then these processors operate
in pipeline. In other words, the mesh points are grouped
by rows (or by columns) and each group is assigned to
one processor. In this pipelining, the processors have to
wait while others processing the adjoining groups of
mesh points are operational, so that the two groups of
processors operate in different phases. This constraint
causes a degradation of the speed-up ratio to about one
half. The convergence of the iterations may be detected
when the last processor obtains the same result in a
consecutive run.

5. CORAL Prototype

In order to prove the feasibility of the binary tree
architecture in parallel processing, a CORAL prototype
is being developed presently at the Tokushima University.
The CORAL prototype is a two level binary tree multi-
processor consisting of 7 processors (Fig. 25). RP is

FDK CRT

@— SORD 23, <

- TK-80
£X 801 6k8 16k8
TK-80 TK-80 TK-80 TK-80
16kB 16kB 16kB 16kB

Fig.25 CORAL prototype.

A Binary Tree Multiprocessor: CORAL

ey
PA PCR PCL P} =
8255 PP1
onl 1 l
N

ADDRES
]
| ;E

B 08 R
i_um.rul by F
i8080A]

PIC

PLH PCL 78
8255 PPI
A0

U]

i8080A

i18080A

Fig. 26 Interprocessor connection of CORAL prototype.

SORD M223 Mark II microcomputer, and other proces-
sors are single board microcomputers.

The interprocessor connection is illustrated in Fig. 26,
where three processors in connection are shown. The
programmable peripheral interface 8255 and the program-
mable interrupt controller 8259 are used for the simplicity
of the circuit.

6. Conclusion

The binary tree is a simple but a powerful structure.
It has been observed in several computer architecture to

237

Fig. 27 Multiprocessor with a binary tree bus.

date. Lipovski is probably the first one who has found
the advantage of the binary tree structure in organizing
a cpu [2]. A data-flow processor of Davis also imbeds a
binary tree structure [3]. The tree organized multicom-
puter of Harris and Smith most resembles CORAL,
although tertiary tree instead of binary tree is used.
Among them, CORAL has the simplest structure and
fully depends on the power of the binary tree structure
unlike other ones.

A further variation of the CORAL system is the one
shown in Fig. 27 where the binary tree is used as a bus
and processors are connected to the nodes of the binary
tree bus. In this system, the routing of the packets is
exclusively performed by the bus itself, so that the
processors are relieved from this task.

The authors are grateful to the helpful suggestions
made by Dr. Yoshimura of Toshiba Research and
Development Center during the period of this research.

References

1. TAKAHASHI, Y., YOSHIMURA, S. A Test Equipment for Parallel
Program Processing, Information Processing, 20, (1979) 319-322.
2. Lrpovski, D. H. The Architecture of a Large Associative
Processor, Proc. SJCC (1970) 385-396.

3. Dauvis, L. A. The Architecture and System Method of DDM1:
A Recursively Structured Data Driven Machine, Proc. fifth Annual
Symposium on Comp Architecture, (1978) 210-215.

4. HARRrIs, J. A., SmiTH, D. R. Simulation Experiments of a Tree
Organized Multicomputer, Proc. Sixth Annual Symposium on
Computer Architecture, (1979) 83-89.

(Received June 12, 1980: revised August 6, 1980)

