Short Note

An Approximation of Real Analytic Functions Based on
Cauchy’s Integral Representation

Noriyuki KiTAHARA* and HIDEO YANO**

A new method based on Cauchy’s integral representation is developed for approximating analytic functions.
This method gives a very simple computer algorithm in comparison with the usual approximations of analytic
functions such as Taylor series and orthogonal polynomial expansions. Numerical results are also discussed.

1. Introduction

It has already been recognized that rational functions
are useful for the approximation of functions. In such
an approximation, there are a number of difficult
problems from both theoretical and practical points
of view, because it is generally nonlinear with respect
to the unknown parameters, and this nonlinearity
depends on the property of the functions to be approxi-
mated (1}, [2], [3]).

On the other hand, as long as we restrict ourselves
to the case of analytic functions usually encountered in
physical problems, there is a possibility that the theory
of analytic functions can be applied effectively [4]. In
this paper we will propose a new method for approximat-
ing analytic functions based on the Cauchy’s integral
representation. The approximation consists of a linear
system of rational functions which have simple poles
originating in the Cauchy’s kernel. The unknown
parameters can be directly determined by discretizing
the integral.

2. Rational Expansion of Analytic Functions

Consider a real analytic function f(x) defined in the
closed interval K=[—1, 1] on the real axis. And let the
corresponding complex function f(z) be analytic on and
within a contour I' in the complex plane which encloses
the interval K. The starting point of our approach is
Cauchy’s integral representation
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where the path of integration I' is taken in the positive
sense. It can be expected to approximate the integral (1)
in the form
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where z,, z,, * *, zy, Zy 4+ ; =2, are successive points on I',
so chosen that |z;,,—z;| approaches zero uniformly
with respect to x as N—co0. And C; are proper complex
constants to be determined by the approximation
scheme. The formula (2) is regared as a simple expansion
based on a system of rational functions, i.e., discrete
values of Cauchy’s kernel.

The path of integration I' may be taken arbitrary if
only the condition concerning (1) is satisfied, so that
there are a number of possible sets of the poles z; in (2).
However, it is practically convenient to specify the form
of contour I to the particular cases. In the present paper,
we shall consider two cases where I' is a circle, and where
it is an ellipse.

3. Approximation with Circular Contour I'

Let I'" be a circle |z]=R>1, R being a positive con-
stant. Then the integral in (1) is rewritten as

fx j O 4, 3
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with z=R- e
Further, the Eq. (3) can be approximate by the trape-
zoidal rule, so that
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where
z;=R-€"%
and
0, 2(1';1)"‘

This is the approximation formula for a circular con-
tour. It can be used for approximating analytic functions,
unless they have singularities on and within the circle
|z|=R. Additionally, the formula (4) can be reduced to
a real form if we take z; symmetric with respect to the
real and the imaginary axes.

As is well known from the classical approximation
theory [5],
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From (5), we have
le@) = f(x)— fu(0)|

23
SayEM, (6)

with
1 N
=5 1;1 M;.
This is the error estimate for the circular case.
4. Approximation with Elliptic Contour I

In order to release ourselves from the above-mentioned
restriction that f(x) must not have singularities in |z| < R,
we introduce a conformal transformation from the
z-plane to the w-plane, with a mapping function defined

by
LY
z—2 w+w

where z is a complex variable defined in Sec. 2. This
function maps the ellipse which has foci z=41 and
semi-axes (R+R™1)/2 and (R—R™')/2 onto the circle
|w|=R> 1. Thereby, (1) results in

2 vf(z)
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where
(-3)
v= 5 w-— ;
and
w=R-e®.
Similarly as before,
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and

This formula can be used even if the singularities of the
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function are located in the neighbourhood of the line
segment [— 1, 1] on the real axis if we take R close to 1.
The formula (8) can also be reduced to a real form if
we take z; symmetric with respect to the real and the
imaginary axes.

The error estimate for this approximation is the
same as that for the circular case, i.e. (6), excepting that
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5. Numerical Examples

In this section we will give some numerical examples.

Values of log, [le(x)||, for f(x)=sin nx are listed in
Table 1, where |l&(x)|, designates the maximum norm
of g(x)=f(x)—fx(x), xeK, with N taken as powers of 2.
In this case, we performed the experiment with the
parameters R from 1.1 to 3.0 in the increments of 0.1.
However, in the table only the data for optimum value
of R at N=16 are given. Within our experiments, the
results in the elliptic case can be generally considered
better in accuracy than those in the circular case.

Furthermore, we shall show an example for which only
the elliptic algorithm is useful. Table 2 indicates values of
log,o lle(x)||, for f(x)=arctan x, which has singularities
at +i. In this simulation, we selected R=1.1, 1.6 and 2.3
which give ellipse semi-axes of nearly 0.1, 0.5 and 0.9,
respectively. As is shown in this table, the error norm
decreases rapidly with an increase of N, and the approxi-
mation at R=1.6 yields extremly good accuracy, as
can be expected.

We performed the experiments in double precision
arithmetic on FACOM M200 at the Kyoto University
Computer Center.

6. Conclusion

Since we need a fairly large number of terms when

Table 1 Values of log,oll¢llo in the approximation of f(x)=

sin 7x.
Number of Circular Elliptic
Terms, N R=15"| R=23 R=15 R=23
4 1.1 2.1 — 03 0.5
8 0.3 1.7 — 1.2 — 0.7
16 — 3.2 — 0.3 — 25 — 5.1
32 — 7.2 — 9.0 — 54 —11.3
64 —134 —144 —11.0 —229

Table 2 Values of log,oll¢llo in the approximation of f(x)=
arctan x, with elliptic contour I'.

Number of

Terms, N R=1.1 R=1.6 R=23
4 0.5 - 05 —0.5
8 0.1 — 14 —1.0
16 —0.4 — 3.0 —1.6
32 —1.1 — 6.3 —-2.3
64 —-2.5 —12.8 —3.3




An Approximation of Real Analytic Functions Based on Cauchy’s Integral Representation 93

evaluating fy(x) for a given x with high accuracy,
there is some problem in the efficiency. In the present
method, however, unknown parameters of the linear
system of rational functions based on the Cauchy’s
integral can be directly determined by discretizing the
integral formula, i.e., this method is very simple and
particularly useful for approximations of such com-
plicated functions that their higher derivatives in Taylor’s
series are difficult to obtain.
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