Name ldentification for Languages
with Explicit Scope Control

MASATO TAKEICHI*

This paper describes basic algorithms for analyzing the scope of identifiers of block-structured languages.
The scope rules treated here include closed scopes in addition to the classical open scopes. Name identification
process establishes the relation between defining and applied occurrences according to the scope rules. Analysis
of the scope rules related to data types is left to the semantic analysis and is not treated here. The algorithms
are defined on the (abstract) parse tree which has been generated by the syntax analyzer and will be transformed
in the course of later semantic processing. As the algorithms do not require any additional tables to pass
information to other semantic routines, they would be most desirable for construction of the compiler
front-end together with various semantic routines.

In Section 1, objective of our research is presented. Section 2 introduces data structures of the parse tree and
some notational conventions which will be used in describing our algorithms. In Section 3, a simple algorithm
for the traditional open scope rules is described in order to clarify our idea. In Section 4, the closed scope rules
in modern programming languages are treated. Section 5 is devoted to presenting more sophisticated algorithms
which detect conflicts in declarations. These algorithms can be used in actual name identification routines. And

the concluding remarks are given in Section 6.

1. Imtroduction

The compilation process is usually partitioned into a
series of logically cohesive phases such as lexical analy-
sis, syntax analysis, semantic analysis, and code genera-
tion. Identifiers appearing in the source program are
transformed into some internal representation by the
lexical analyzer at the first stage of compilation. Differ-
ent instances of an identifier are made to share the same
internal value regardless of the scope rules of the
language. Each instance of identifiers is then examined
again in subsequent phases with reference to the scope
rules. Since the traditional scope rules of Algol-like
languages are specified solely by the nested structure of
the syntactic units, e.g., blocks, name identification
could be done in parallel with the syntax analysis. Certain
programming languages, however, provide extended
facilities for the programmer to control the scope of
identifiers. In processing these languages, the name
identification requires more information than the
syntactic structure of the source program and it will be
done as a part of semantic analysis which follows the
syntax analysis. As the semantic analysis, in general,
performs many complex tasks, it is desirable to take the
name identification process out of general semantic
processing, when possible.

This paper gives simple name identification algorithms
for extended scope rules which can be applied to con-
struction of the compiler front-end. The front-end

*Department of Computer Science, The University of Electro-
Communications.

Journal of Information Processing, Vol. 5, No. 1, 1982

translates the source program into some internal form of
the intermediate language and produces machine-inde-
pendent description of the program which will be con-
venient for the code generator [1]. It is usually composed
of the lexical analyzer, the syntax analyzer, and the
semantic analyzer. The first stages of compilation, i.e.,
the lexical and syntax analyses, have been automated by
program generators such as LEX and YACC of the
UNIX operating system [2]. The name identification
process as a part of the semantic analysis could be
implemented in common for different languages with
similar scope rules.

2. Data Structure

As our algorithms for name identification will be
defined on the parse tree produced by the syntax ana-
lyzer, we will sketch here the first phases of compilation
and introduce some notations for representing tree data
structures. The lexical analyzer returns a token when
called by the syntax analyzer. If the token returned is an
identifier, additional value is returned so that the spelling
of the identifier can be referenced by subsequent phases
of the compiler. The lexical analyzer uses the name table
to get the same internal value for different instances of an
identifier. Although our implementation puts no assump-
tion on the structure of the name table, the internal
value for the spelling is assumed to be a pointer to the
record in the name table. For example, the hash method
with a fixed table for primary probing works well for our
purpose. The syntax analyzer parses source programs
and translates them into parse trees, which will be
scanned and transformed by the name identification

46

procedure and further semantic routines. As we will
discuss mainly the name identification problems, detailed
structure of the parse tree is irrelevant and is not spec-
ified here.

We will refer to the node in the parse tree as record.
Every record for the identifier is assumed to have an
occurrence tag and a pointer to the record with spelling.
The occurrence tag is used to specify the kind of occur-
rences of identifiers. We will use the term defining oc-
currence or definition for an instance of an identifier
introduced in a declaration, and the term applied oc-
currence or application for other instance. The definition
and application records have occurrence tags D and 4,
respectively.

Figure 1 shows an example of the parse tree for a
program segment of Pascal. It should be noted that the
record with spelling is effectively shared by as many
records for the occurrences of that identifier.

The purpose of name identification is to establish the
relation between each applied occurrence and the defin-
ing occurrence according to the scope rules. In Fig. 1,
dotted lines show such relation under the classical scope
rules of Pascal. Note that the hash table shown in Fig. 1
becomes unnecessary when the syntax analysis completes,
and the hash link field located in the record with spelling
becomes available for identification processing.

We will use the term block for a syntactic unit in which
identifiers are declared and their visibility ranges over.
In general, blocks may be nested and the nested structure
is naturally reflected in the parse tree. We assume that
each tree for a block has several subtrees for internal
blocks as its descendants. A syntactic unit X such as a
block, a declaration, or an applied occurrence of an
identifier is called an immediate constituent, or a con-

PROCEDURE P;
VAR x: ... s
Vi

PROCEDURE 0;
VAR x: u.
BEGIN ...

hash
table

xi= v
ElD;

BEGIH ... —1
x:= 0 ;
END;

p-(K:x.q) x-r

Fig. 2 Notations for data structure.

M. TAKEICHI

stituent in short, of some block B if B is the smallest
block enclosing X.

In order to describe algorithms concisely, we will use

the following notations:

a) p—(K; x, q) means that the record referenced by
p has an occurrence tag K, a pointer to the record
with spelling “x”, and a pointer ¢ to an other
record.

b) x—r means that the record with spelling refer-
enced by x has a pointer r to an other record.

Abbreviated notations and corresponding forms of the
record are shown in Fig. 2.

The parse tree produced by the syntax analyzer is

expressed using the above notations:

a) for each occurrence of identifier x,

p—(K; x, nil)
b) for each identifier x,
x—nil
where nil points to no record at all.
Note that the record with spelling “x” is unique and
x—nil.

After completion of the name identification process,

each applied occurrence of identifier x should be

p "’(A; X, q)’
where g points to the definition of x with respect to the
scope rules.

3. Name Identification for Open Scope

In the traditional scope rules of Algol-like languages,
an identifier is declared in a block and is automatically
inherited in all constituent blocks unless the identifier is
redeclared in inner blocks. The definition of the identifier
is not visible outside the block in which the declaration
occurs. Such automatic inheritance with restricted visi-
bility of identifiers is called an open scope rule [3].

A basic identification algorithm for the open scope is
as follows:

block(b):
1: for each constituent definition p—(D; x, nil),
x—q of b do

p—(D; x, q), x—>p
2: for each constituent block 4’ of b do
block(b’)
3: for each constituent application p—(4; x, nil),
x—q of b do
p~(4; x, q)
4: for each constituent definition p—(D; x, q),
x—p of b do
x—q
The first statement should be read as follows:
for each defining occurrence of identifiers in block b,
which is represented by a record
p—(D; x, nil)
with the record for x being
x—q,
alter the contents of the records referenced by p and
x so that relations

Narne Identification for Languages with Explicit Scope Control

p—(D; x, g)and x—p

hold.

Other statements should be read similarly. The procedure
“block” is called recursively for inner blocks at step 2,
which follows the data structure of the parse tree.

The algorithm does not detect any possible conflicts
of definitions such as more than one defining occurrences
of an identifier in a block. When we apply this algorithm
to implementation of the name analysis procedure, it is
necessary to make additional tests on definitions. An
improved algorithm will be described in Section 5.

In many implementations of Algol-like languages, the
symbol table is organized as a stack for processing the
open scope rule [4]. The above algorithm uses the third
field g of the definition record

p~>(D; x, q)

as a link to the definition of x appeared in some outer
block. Such linked structure effectively behaves as a
stack. If the symbol table is organized as a stack with
contiguous storage locations, removal of local definitions
at scope exit is performed by simply moving the stack
pointer. Since the algorithm here uses the linked struc-
ture for the stack, another scan of definitions is necessary
at step 4. The time required at scope exit is, however,
considerably less than that of other operations for
applied occurrences, which normally appear much more
than definitions.

4. Name Identification for Closed Scope

Modern programming languages such as Modula-2
[5], Euclid [6]), Mesa [7), and Ada [8] provide new facil-
ities to control the visibility of identifiers in addition to
the classical open scope. In these languages, the program-
mer can specify explicitly which identifiers are or are not
inherited by inner blocks and which ones are visible out-
side the block where they are declared. This kind of a
scope is called a closed scope in contrast to the open
scope [3]. In Modula-2, the open scope is associated with
a procedure declaration and the closed scope is with a
module declaration. We will follow the terminology used
in the definition of Modula-2 and refer to explicit
specification of inheritance as importation and explicit
widening of inner declaration as exportation.

Identifiers which are imported (exported) are assumed
to be specified in an import (export) list of a block.
Figure 3 shows an example of blocks with explicit scope
control. An importation (exportation), i.e., an occurrence
of an identifier in an import (export) list, is assumed to
have an occurrence tag I(E).

There may be conflicts in definitions, importations,
and exportations. It is reasonable to assume that the
“legal” block contains no two occurrences of the same
identifier in definitions and importations, and no defini-
tion or importation shares any exported identifiers from
inner blocks. This is the case with Modula-2. We assume
for now that no conflict appears among definitions,
importations, and exportations. We will describe an

47

M
WODULE M
VR x: .. £
A
MODULE N; N
IWPORT x; . A
EXPORT v [t Sk S
VAR v i E D
N ‘
BEGH il
vim x5
£ K 21
A A

BEGIN ... X
xX:i= ¥ ;
woo® | T LTS =

1: IMPORTATION CHAIN 2: EXPORTATION CHAIN

Fig. 3 Example of closed scope.

algorithm with conflict detection in the next section.
Each applied occurrence of an imported or exported

identifier will be assigned a pointer to corresponding
importation or exportation, which in turn points to
another importation, exportation, or (finally) definition.
Thus an application

p—(4; x, nil)
of an imported identifier x will become

p—(4; x,90)
and an importation chain

q0—(; x, 1)

9.~ x, 93)

q,—~(D; x,1)
will be established. The importation chain will be used in
later phases to examine attributes given by the declara-
of the identifier. An application of an exported identifier
is processed in the same way and an exportation chain is
also created. We will denote an importation or exporta-
tion chain for g=¢q,, n20 as
q—*»(D; x,r)
A basic algorithm for the closed scope is described as
follows:
block(b):
1: for each constituent block 4’ of b do
for each constituent exportation p—(E; x, nil),
x—g of b’ do
p—(E; x,q), x—>p
2: for each constituent definition p—(D; x, nil),
x—qof bdo
p—(D; x, q), x—p
3: for each constituent importation p—(7; x, nil),
x—q of b do
p—(; x, q), x—p
4: for each constituent block b’ of b do
block(b’)
5: for each constituent application p—(4; x, nil),
x—q of b do
p—(4; x,9)
6: for each constituent importation p—(I; x, q),
x—p of b do
x—q

48

7: for each constituent definition p—(D; x, q),
x—p of b do
x—q
if g—(E; x, r) is a constituent of b then
q—(E; x, p), p~(D; x,r)
8: for each constituent block b’ of b do
for each constituent exportation p—(E; x, q),
X-p, q—*:»(D; x,r)of b’ do
xor
if —(E; x, s) is a constituent of b then
r—(E; x, p), ¢>(D; x, 5)

The importation chain is established in step 3, which
remains unchanged thereafter. On the other hand, crea-
tion of the exportation chain is somewhat intricate. In
steps 7 and 8, the pointer in the third field of the exporta-
tion record is moved to its definition record and a pointer
to an exportation or definition record is given to that
field in place (Fig. 4). This makes extra scan of the
exportation chain necessary at each scope exit. However,
it would be reasonable to assume that the depth of block
nesting is limited to 2 or 3 in actual programs. Observa-
tion of about 30 modules in the Modula-2 system
distributed by ETH [9] reveals that only one module
contains a module declaration in itself. Our algorithm
would be acceptable if one recognizes that it uses no
extra space to hold the exportation chain.

Another question may be posed. That is, the proposi-
tion

... 1s a constituent of b”’
in steps 7 and 8 is not expressed in terms of the data
structure described so far. If every occurrence of the
identifier had the nesting level of the block, it is easy to
determine whether it is or is not a constituent of a spec-
ified block. Such extended structure can also be applied
to the algorithms with conflict detection in the next
section.

5. Conflict Detection

The algorithms described in previous sections work
for programs which contain no conflict of names in
definitions, importations, and exportations. The practical
name identification routine should, however, detect such
conflicts and perform identification properly even if

q
[D]
1
=

Berore sTep 8 AFTER STEP 8

Fig. 4 Creation of exportation chain.

M. TAKEICHI

erroneous programs are given. In this section, we will
incorporate conflict detection mechanism into the previ-
ous algorithms. As mentioned in the last section, the
nesting level of the block will take an important role in
deciding where the identifier occurs. Detection of errors
such as applied occurrences of undefined identifiers is
left to further semantic analysis. It is relatively easy if
one recognizes that nil in the third field of the application
record indicates the case.

We now extend the data structure for the occurrence
of identifiers so that it can hold the nesting level / of the
block, which is of the form

p—»(K; X, q, I)
We assume that the level / has been given to every record
for identifiers in the phase of syntax analysis.

Using the extended structure, an improved algorithm
for the open scope becomes:

block(b, I):

1. for each constituent definition p—(D; x, nil, /),
x—q of b do
if g—(D; x, r, 1) then error (“‘def/def conflict’)
else

p—(D;x,q,1), x—>p
2. for each constituent block b’ of b do
block(b’, 1+1)
3. for each constituent application p—(4; x, nil),
x—q of q do
p—=(4;x,q,1)
4. for each constituent definition p—(D; x, ¢, 1),
x—r do
if p=r then
x—q
Note that the last statement in step 4 restores only the
pointers which have been successfully stacked at step 1.
Similar improvement on the algorithm for the closed
scope yields:
block(b, 1):
1. for each constituent block b’ of b do
for each constituent exportation p—(E; x, nil, /+ 1),

x—q of b’ do
if g—(E; x, r, I+ 1) then error (‘“exp/exp conflict”)
else

p—(E; x, 9, 1+1), x>p
2. for each constituent definition p—(D; x, nil, /),
x—q of b do
if g—(D; x, r, I) then error (“def/def conflict™”)
else if g—(F; x, r, [+ 1) then
error (“deffexp conflict’)
else
p—(D;x,4,1), x—p
3. for each constituent importation p—([; x, nil, /),
x—q of b do
if g—=(D; x, r, 1) then error (“imp/def conflict’)
else if g—(E; x, r, I+1) then
error (“‘imp/exp conflict™)
else if g—(Z; x, r, I) then error(“imp/imp conflict”)
else
p~ x, 9, D), x—p

Name Identification for Languages with Explicit Scope Control

4. for each constituent block b’ of b do
block(b', 1+1)
5. for each constituent application p—(4; x, nil,),
x—q of b do
p—(4;x,q,1)
6. for each constituent importation p—(I; x, g, 1),
x—-r of b do
if p=r then
x—q
7. for each constituent definition p—(D; x, ¢,),
x—s of b do
if p=s then
x—q
if g—>(E; x, r, I then
q—(E; x,p, 1), p—=(D; x, 1, 1)
8. for each constituent block b’ of b do
for each constituent exportation p—(E; x, ¢, I+1),

x—tof b do
if p=t, ¢5(D; x, r, I) then
xX—r

if r—(E; x, s, I) then
r_’(E; X5 D5 1)’ q:’(D; X, S, I')

In this algorithm, the tests for constituency is expressed

by means of the level of the block as:
if g—(E; x,r,[) then- - -

which should be read as:

if the record referenced by g has occurrence tag E, and

level / (x and r do not matter here), then . . .

The algorithms described in this section would be
applicable to practical name identification routines.

6. Conclusion

Practical languages with explicit scope control usually
provide the block with the classical scope rules as well.
In Modula-2, for example, the module (closed scope)
may contain both modules and procedures (open scope)
in itself. Our algorithms for open and closed scopes
described in this paper are easily combined together to
deal with such intermixed scopes.

Another kind of scope is found in languages with
record types. The feature of selective widening of scopes
by qualification has a similar property, which is found
in Modula-2 modules and Simula classes. A record field
is usually named by a field identifier, which has a scope
different from that of identifiers defined in the block.
The record field is designated by a qualified name com-
posed of a qualifier indicating the variable identifier of
that record type and the field identifier itself. This kind
of names can be analyzed provided that the identification

49

of the variable has been completed and the type has
been processed. As our algorithms take no account of
the semantic processing of declarations, analysis of such
scope is not treated. However, algorithms for identifica-
tion of qualified names could be defined using our data
structure as well by extending our algorithms to handle
the association of identifiers and types.

The symbol table described in [3] is especially designed
for processing importations and exportations. It is based
on the classical one using stack mechanism. The algo-
rithm for handling that table seems complicated and has
less generality. Forward references of identifiers are not
treated there. And the operations at scope exit are
emphasized and a method to reduce the time required at
scope exit is proposed. Although assumptions of our
algorithm differ from those of [3], our approach would
give more general and useful frameworks in construc-
tion of name identification routines for many languages.

It is believed that our algorithms are so simple that
they can be incorporated with other semantic processing
in the compiler front-end. An implementation of
Modula-2 based on our identification algorithms is in
progress.

Acknowledgement

Katsuhiko Kakehi and Eiichiro Sumita participated
in many discussions during this work. The author would
like to thank them. He also acknowledges the referees
for detailed comments and suggestions for improvements
of an earlier draft.

References

1. Goos, G. and WINTERSTEIN, G. Towards a Compiler Front-

End for Ada. Proc. ACM-SIGPLAN Symp. The Ada Programming

Language, SIGPLAN Notices 15 (November 1980), 36-46.

2. Special Issue on the UNIX TIME-SHARING SYSTEM, The

Bell System Technical Journal 57, Part 2 (June 1978).

3. GRrAHAM, S. L., Joy, W. N. and RouBINE, O. Hashed symbol

tables for languages with explicit scope control. Proc. ACM Symp.

Compiler Construction, SIGPLAN Notices 14 (August 1979),

50-57.

4. AHO, A. V. and ULLMAN, J. D. Principles of Compiler Design.

Addison-Wesley (1977).

5. WirTH, N. MODULA-2. Berichte des Institut fir Informatik

Nr. 36, Eidgenossische Technische Hochschule Zirich (1980).

6. LampsoN, B. W., HORNING, J. J., LonDoN, R. L., MITCHELL,

J. G. and Porex, G. L. Report on the programming Language

Euclid. SIGPLAN Notices 12 (February 1977).

7. MICHELL, J. G., MAYBURY, W. and SWEET, R. Mesa Language

Manual. Xerox PARC, CSL-78-1 (1978).

8. Reference Manual for the Ada Programming Language.

United States Department of Defense (1980).

9. Modula-2 compiler distribution tape. ETH Zirich (1980).
(Received August 27, 1981 : revised October 21, 1981)

