A Double-Layered Text Editor*

HiroYAsU KAKUDA** and TAKASHI Tsun***

A double-layered text editor, called KE (=Kernel Editor), in which the user can define and redefine commands
by writing “microprograms”, is described. KE itself is in fact a skeleton. It contains a processor of a modest string
manipulation language. It is by providing programs in this language, or “‘microprograms”, defining editor com-
mands that KE can be made to behave as a useful text editor. (Non-text editing applications are also possible.)
The main advantages are that modification and experimentation in editor commands are easy, and proper in-
sulation between the external and internal structures is provided. Experiences with developing and using KE are

also discussed.

1. Introduction

It has been pointed out that tools tend to shape the
users [1]. This observation, often made about program-
ming languages, applies equally well to text editors.
The user of a text editor tends to find his editor to be
“‘the best in the world”, or at least sees less faults in his
than do the users of other text editors. For this reason
it is debatable whether the text editors currently in use
are as good as they can be.

How can we find faults in, and improve our own text
editors in spite of the mental inertia we might have?
One good way is to design an editor in which experimen-
tation and modification can be done easily. By such an
organization we can (1) encourage ourselves to think
about possible alternatives; and (2) collect ideas from
a user community as well as from the designer himself.
Moreover, we could (3) customize the editor to meet
special needs of special users if the occasion demands.

This paper describes a text editor called KE (=Kernel
Editor) developed with the above points in mind. It has
a double-layered organization. In the internal structure,
it is an interactive processor of a modest string manipula-
tion language, hereafter called MCL (=Micro Com-
mand Language). In a broad way the language is similar
to SNOBOL4[2] and SL5[3]. It has a pattern matching
feature with a success/failure mechanism, and has
modern control structures. The (external) editor com-
mands invoke corresponding programs written in MCL.
The user can define a new command, or even redefine
existing ones by writing a program in the language.
KE has no editor commands initially. KE itself is not a
text editor but a skeleton. By compiling and loading
suitable MCL programs, KE can be made to serve as a

*A preliminary description in Japanese of part of this research
is found in T. Tsuji and H. Kakuda: A Text Editor Based on
Micro Instructions, Proc. of the 18th Annual Programming Sym-
posium at Hakone, January 1977, pp. 20-27.

**Department of Information Science, Tokyo Institute of
Technology.

***Now with Institute of Information Sciences, University of
Tsukuba. The overall structure of KE, the basic design of MCL,
and the implementation of the MCL compiler are due jointly and
equ}zlilly to the authors. The rest of the work was done by the first
author.

Journal of Information Processing, Vol. 5, No. 1, 1982

useful text editor.

Our organization differs from that of some conven-
tional text editors such as TECO[4]. In TECO, the users
can define a macro command in terms of existing com-
mands accessible from ordinary users. In contrast,
the MCL programs in KE are separate from ordinary
commands. They are not command sequences but
programs having their own constructs.

Independently developed, but closely related ideas
are found in Stallman’s EMACS|[5]. A huge TECO-
based program attempts, so to speak, to fill every need
any user might have. In contrast, KE is a practical tool
everyone can afford.

In Chapter 2, we describe the user’s view of our editor.
Chapter 3 sketches a typical set of text editing com-
mands implementable on KE. Chapter 4 gives more
details of the MCL language, and illustrates how MCL
programs can implement editor commands. An im-
plementation of KE itself is described in Chapter 5.
Chapter 6 describes our experiences, and finally, Chapter
7 attempts to defend our approach. For a complete
grammatical description of MCL, a complete descrip-
tion of the set of commands sketched in Chapter 3, and
a full listing of the MCL programs implementing the set
of commands, see [6], of which this paper is a condensed
version.

2. An Overview

2.1 The Overall Structure

KE has a number of working spaces called internal
files. Files managed by the operating system are called
external files. Texts in the internal and external files can
be transmitted back and forth. All the text editing
operations manipulate texts in the internal files. Besides,
there are control program files, which hold “micropro-
grams’’*,

*Here, we are using the word “‘microprogram’ as a metaphor.
Our “microprogram” controls the action of the MCL monitor, a
piece of software rather than hardware. However, the basic idea
of having a substructure is same as in conventional microprograms
directly executed by hardware. In the sequel, we will be using this

word in this metaphorical sense, and leave out the quotes in some
cases.



Main

H. Kakupa and T. Tsui

I 1

Terminal
Controller

File

External Inte!
Files File:

Control
Program
Files

A MCL MCL /
Mc;)euslse Compiler Monitor
s

— Calls

—— Exchange of information

Fig. 1 The conceptual structure of KE.

Fig. 1 shows the conceptual structure of KE. The
information transfers between the internal and the
external files, as well as those between the external and
the control program files, are controlled by a file access
module. An MCL compiler takes programs from one of
the internal files, and writes compiled “microprograms”
onto some of the control program files. An MCL monitor
executes (interprets) the microprograms in the control
program files. A main controller gives control to the
above three modules as appropriate. A terminal con-
troller provides an interface to a terminal. It is called
both by the main controller and the MCL monitor.
There are a number of different kinds of terminals
available in this particular environment. They can be
switched back and forth under the control of the main
controller.

From the user’s point of view, there are two command
input modes. In one mode, the terminal controller is
connected directly to the main controller; in the other,
it is connected to the MCL monitor. We call them the
file mode and the editing mode, respectively. Only the
editing mode can be microprogrammed. The file mode
commands are wired-down.

2.2 Some more Details

An internal file contains a sequence of lines (possibly
null), i.e., a text. In the editing mode, one of the internal
files is active. The lines contain 80 characters simply
because our operating system imposes this part of the
IBM culture upon us.

There are 36 public internal files corresponding to
single letters A, B, ---,Z and digits 0, 1, ---,9. In
addition, there are 10 hidden internal files .0, .1, ---, .9
represented by a single digit with a dot prefixed. Each
internal file has a private pointer which points at a
boundary of two adjacent lines. The line just above
(before) the pointer and the line just below (after) it are
called the previous line and the current line, respectively*.
There are 26 control program files .A, .B, ---, .Z.

The file mode commands accepted by the main con-

*Here and in the sequel, the earlier members of the sequence
of lines in a text are considered to be above the later members.

Table 1 The external command syntax.

Name Format* Meaning

Read i=f1f2---fn  Concatenates the contents of the files
fl,-- -, fn, and assigns the result to the
internal file i.

Write e=ili2---in Writes a concatenation of the texts in
the internal files il, ---,in onto the
external file e.

Compile *i Calls the MCL compiler with the con-
tents of the internal file i serving as a
source program.

Load <e Reloads the saved microprograms in
the external file e onto the control pro-
gram files.

Save >e Stores the currently loaded micropro-
grams onto the external file e.

Enter @i Invokes the MCL monitor with internal
file i serving as the active file.

Switch  —t Switches to terminal t.

End ! Finishes the KE execution.

*i, e, f, and t denote an internal file, an external file, an internal or
external file, and a terminal device, respectively.

troller are as shown in Table 1. Some of them appear
in a sample session of Section 2.3.

In our local environment, which is batch(!) rather
than time-sharing, four different kinds of terminal
devices are available. They are two CRT displays
(marked in Fig. 1 as S1 and SO) which differ in screen
size, color, and input facilities, also two typewriters
(marked T1 and I0) which have different keyboard
arrangements. Among the four, CRT display S1 is
the most powerful. It has an 80*24 screen in three colors,
a set of function keys, and a light pen. We will mainly
talk about it in the sequel.

2.3 A Sample Session

We now describe a sample session assuming the
display terminal (S1). Fig. 2(a)-(j) show what the screen
looks like during the session. Some nonessential details
have been omitted.

See Fig. 2(a). The user reads an external file into an
internal file, say “A”, by “A=FILEl, VOL1”. Then
he enters the editing mode by issuing the enter com-
mand “@A”, Fig. 2(b). Note that the previous file



A Double-Layered Text Editor

mode commands are stacked on the screen. The first
stacked line “¢FILEO, VOLO” indicates that micropro-
grams were loaded automatically from the external
file “FILEO, VOLO” at the outset of the operation.

Upon entry to the editing mode, a number of lines
adjacent to the pointer position of the active file (A)
is shown on the screen. In this case, the pointer points
at the boundary between the top line and a hypothetical
line preceding it, Fig. 2(c). Suppose that we wish to
change “DRINK” to “EAT” in the second line of this
Fortran program, and add a STOP statement. An
N-command makes the next line become the current
line.

We now have the FORMAT statement in the current
line, Fig. 2(d). We issue two R-commands. First we
change the leftmost (and in this case unique) occurrence
of “9” into 7", and then replace the leftmost “DRINK”
by “EAT”, Fig. 2(e).

We now go down one more line, Fig. 2(f), and insert
a STOP statement at the pointer position, Fig. 2(g). An

FILEO,VOLO

PILEO,VOLO Ja=PILET ,vOL1

=FILE},VOL1 jer

(a): Read a text. (b): Enter the editing mode.

WRITE(6,100)
WRITE(6,100) 100 PORMAT(VH ,9HDRINK ME.)}
oo somiantin s b L
END
v R/9/7/
(c): Edit a text. (d): Replace,
...... B T T S ARLILLRL IS i .
100 PORMAT(1H ,7HDRINK ME.) 100 PORMAT(1H ,THEAT ME.)
...... BT EERALAARRLLILILILY E  ACACLRLLE R L
JR/DRINK/EAT/ N
(e): Replace. (f£): Next line.
WRITE(6,100)
WRITE(6,100) 100 PORMAT(1H ,THEAT ME.)
oo ot el B AASAAARAALILLLIILE
END END
" STOP @
(g): Insert. (h): Return to the file mode.

<FILEO,VOLO
FILEO,VOLO jA=FILE1,VOL1
A=PILE], VOL1 [FILE2 ,VOL2=A

PTLE2, VOL2=A f

(1): Save the text. (4): Bye.

Fig. 2 A sample session.

@-command takes us back to the file mode, Fig. 2(h).

In Fig. 2(i), the user saves the result to an external
file by typing “FILE2, VOL2=A". If he has another
external file to edit, the above process may be repeated.
When finished, the user types an “!”, Fig. 2(j), whereupon
the editing session terminates.

3. A Command System for Text Editing

To give the reader some idea about what can be
implemented on KE, Table 2 gives a summary of a set
of editing commands being used daily in our environ-
ment. The commands “N”, “R”, and “I” described in
section 2.3 are not part of KE, but of the command
system described here. The commands prefixed by “*”
in the table, such as “C”, “X* and “Y”’, are ad hoc.
Some of them have been built for experimental purposes,
while others, as tools for implementing other commands.
The latter class of commands have been made available
to users because they are useful in their own right. This
particular system of commands is presented here as a
sample. We have no intention to claim that this set is
superior to any other. (Some of the command names,
notably ‘‘until”, are admittedly exotic. There are
historical reasons for these [6].)

The command system can be used also with a type-
writer, but we concentrate on display terminals here.
Fig. 3 shows the standard display format on Sl in
detail. (We note that this format is defined by a micro-
program. See section 4.3.) At (1), names of the internal
files currently in use are shown in green, with one
exception: the name of the active internal file is shown
in purple. The dashed line at (2) indicates the pointer
position in the active file. The previous and the current

Table 2 A summary of standard commands.*

Code Name Description
*A (Anchored) Prefixed to U and H commands
B Back Same as /N
*C Change Similar to R, slow, with generalized pattern
matching
D Delete
E Execute Command strings are executed
G Get Copying from another internal file
H Hunt Context search with deletion
I Insert Insertion
*J JCL Generates job control statements for the
local operating system
L Line count
M Movie Scrolling over the text (displays only)
N Next Going down
P Print (Typewriters only)
R Replace
T Top Going to the bottom requires /T
U Until Context search
*X eXhibit Refresh the display
Y split line Split the current line
*Z utility calls Ex. ZCONC for line concatenation
: Set tab
@  Exit

*The commands prefixed by ‘“*” are ad hoc.



4

lines are displayed at (3) and (4), respectively. Seven
lines above the previous and below the current lines
are displayed at (5) and (6), respectively. Typed com-
mands enter the command display area, (7), and are sent
to the computer upon pressing a send-key.

When a command moves the pointer or changes the
text, the display is automatically refreshed. A refresh
can be forced by an explicitly X-command (Table 2).
Our terminal (S1) is sufficiently fast for the refresh opera-
tion to be invoked for each command, the transmission
rate being 3000 char/sec.

In our environment, the display terminal has 16 func-
tion keys. They are used for tabbing, invocation of
macros, and the like. These facilities are also coded in
MCL.

4. The Micro Command Language

4.1 General Remarks

We will now show what an MCL program looks like.
As noted earlier, MCL is a procedure-oriented string
manipulation language with facilities for handling the
internal files. It has modern control structures, a pattern-
matching facility with a success/failure mechanism, and
recursive procedures. On the other hand, it has no
declarations except for modules and procedures. There
are no global variables, and no goto statements. It
partly takes care of command parsing.

There were three fundamental objectives in the design
of the MCL language:

First, simplicity. MCL has been deliberately made
simple. It has a small vocabulary and is represented in a
compact syntax. No keywords are used. Instead, we use
symbols such as “?”, “<”, and “>”. Only a small
number of built-in routines are introduced. Identifiers
are restricted to very basic ones such as A, B, C, - - -.
On the interactive environment, compact representations
are preferable, because they require fewer keystrokes and
a larger part of MCL programs can be displayed on

H. Kakupa and T. Tsuit

compiler small and fast. MCL programs are compilable
on-line without requiring more than very modest
resources. In the quest for simplicity, readability has
been sacrificed considerably but, hopefully, writability
has not.

Second, safety. Dangerous facilities, which might be
misused to cause a catastrophe in an on-line situation,
have been carefully eliminated. For example, MCL
has no facilities for switching the active internal file, or
deleting an internal file. These must be done in the file
mode. Pointer values can be changed only by using a
restricted set of primitives.

Third, machine-independence. At least in its general
structure, MCL does not depend on the particular
machine or operating system.

An MCL program consists of one or more separately
compilable modules. A module can contain one-level
procedure declarations. No nesting of procedure declara-
tions is allowed. Variables need not be declared. The
type of a variable is that of the value which the variable
contains, and is possibly changed by executing an
assignment statement. MCL allows five data types:
integer, string, file, boolean, and signal. The last two
types are used for switching the program control flow.
A value of type signals may be either ‘“‘success” or
“failure”.

4.2 A Nonsense Operation

See Fig. 4 for a programming example. This program
performs a nonsense operation: for each occurrence of
words in the current line, the order of the characters is
reversed. One can invoke this program by typing “K”
as a command. For example, if the current line is

Time flies like an arrow.
the result is

emiT seilf ekil na .worra

The program works as follows. “&[” in line 1 and
“]&”” in line 12 enclose a module K. In line 2, “A =C(*)’
’;” is an assignment statement which takes the content
of the current line, appends a space to it, and assigns the

the restricted screen area. Simplicity also makes the result to variable A. “B="";" assigns an empty string to
< 40 —>
B
-6
-5
-4
-3 44—
-1
R ONS LI e 2
CURRENT LINE FH—
TP PP PP RP PP PR P PR PPRRP PP P NP RRPP
2
3 —+—®
5
6
7
COMMAND INPUT AREA_ +—"
FILES 01DLQ —4—A1)

Fig. 3 The standard format of the display in S1.



A Double-Layered Text Editor

variable B.

Symbols “<”’ in line 3 and ““>"" in line 10 call for an
infinite repetition. All the statements enclosed by these
symbols, possibly separated by semicolons, are re-
peatedly executed until either an exit statement or a
return statement is encountered. Symbols “?” in line 4,
“:” in line 4, and ““,” in line 9 correspond to ““if ’, “then”,
and “else”, respectively. The condition part, “$A=C,’
',A” in line 4, is a matching expression. If A contains a
space, the substring preceding the first space is assigned
to C, the substring following it, to A and the resultant
value is “success”. C may be null. If no space is found,
no assignment is performed, and the value of the match-
ing expression is ‘“failure”. The values ‘‘success” and
“failure” of a type signal, when used in the “condition”
part of an if statement, serve as “true” and ‘“‘false”,
respectively. Hence, if A contains at least one space,
the compound statement in lines 4 through 8 (enclosed
by parentheses) is executed. “$SC_1=I,C” is a split
expression, which causes the value of C split into two
pieces at position 1, and causes the divided substrings
assigned to [ and C, respectively. If this succeeds, i.e.,
if the value of C is non-null, the value of I followed by
that of K is assigned to K. If the value of C is null, the
split expression fails and returns “failure”, whereupon
“1” is executed. The symbol ““!” represents an exit
statement. It causes a one-level exit from the sur-
rounding loop expression. In summary, the lines 4
through 8 reverse the characters in C, and append the
result to B.

‘“¥<=>B"” in line 11 is a replacement statement.
The contents of the current line is replaced by B. “*”
specifies that the replacement occurs for the current
line of the active internal file. In this case, the result
contains one more characters than does a standard text
line. (Recall that the lines have a fixed length.) The final
character, which is a blank, is simply truncated.

4.3 More Realistic Examples

We now show a few further programming examples
just to convey the flavor of what is actually going on in
the microprograms implementing the command system
of Chapter 3.

Fig. 5 implements the U-command (for a context
search). “U” stands for *“Until”. The command moves
the pointer until an occurrence of a specified pattern is
reached. Thus, in “UDRINK” a line containing
“DRINK?” is searched for downwards starting from the
line just below the current line. If found, the pointer is
moved to the line boundary just above the first line
containing “DRINK”. Otherwise, an error message is
displayed, and the pointer remains unchanged. In “/
UDRINK?” the action is a mirror image of “UDRINK”
relative to the current pointer position, i.e., it searches
upwards. “lOUDRINK” causes “UDRINK” to be
repeated ten times.

It is with the help of a mechanism built in the MCL
language that this short program handles all the cases.

In MCL, the module call construct determines the name
of the invoked module at run time. The command
“UDRINK?”, which corresponds to calling this module
with an actual parameter ‘DRINK’, is taken care of by
the module call “ A’UDRINK’ ”. Similarly “/UDRINK”
corresponds to the module call “A’/UDRING'”.
Each module has an implicit direction variable. The
direction to which the user wishes to search (represented
by “/””) is passed through the module call, and is as-
signed to the direction variable. An indicator “.” can
be used to modify the function of the file management
constructs C(*) and N(*) depending on the value of the
direction variable. For example, “,N(*)” is, if the value
of the direction variable is empty, equivalent to ‘“N(*)”,
i.e., moves the pointer downwards; otherwise, it is
equivalent to “/N(*)”, which moves the pointer up-
wards. Thus, the editing operations related to the direc-
tion are already in MCL. For further details see [6].

Fig. 6 implements the X-command (Table 2) for the
multicolor terminal illustrated in Fig. 3. For example,
see line 29. The screen area corresponding to (4) of Fig. 3
is refreshed by these statements. “P(G, 1120)” means
that the value of G is displayed at the character position
1120. The screen format can be designed freely in this
way.

This module contains two procedure declarations.
One (in lines 2-14) is for refreshing the area (6) or (5)
of Fig. 3, depending on the value of the direction
variable. Another (in lines 15-25) is for writing the frames
on the screen.

Finally, Fig. 7 implements the command analyzer of
the command system described in Chapter 3. The U-
and X-modules in the above are called from this module.
A string typed at the user’s terminal is read by the
program by means of get content built-in routine call
“G( )”, and is analyzed as an editing command by the
modaule call “E A M”’. No explicit syntax analysis for the

1 &[K:

2 A=C(%)' '; B='';
3

i 2$A=C," ',A:(
5 Kmt?,

6 < 2$C_1=1,C: K=IK, 1>}
7 B=BK' '

8 )

9 » !

0 >;

1 #<=>B

2

-

l&

Fig. 4 A sample program for a nonsense operation in MCL.

1 &[(N)U(S):

2 2N=0:N=1; S(¥*);

3 <

i 2N<=0: 11S'4'; N=N-1;

5 <

6 2/(.N(*)): ( R(*); !IF#'EOF'Z(N) );
7 ?2$.C(¥)=,S,:!

8 >

9 >

10 J&

Fig. 5 The U-module in MCL.



6

editing command is needed except for checking the
appearance of the @-command for exiting from the
command interpreter. All are done within the module
call mechanism.

The typed command is executed in the following way.
If the user types “UDRINK?”, the M-module of Fig. 7
causes the U-module to be invoked with an actual
parameter 'DRINK'’. If ‘DRINK’ is found in a search
done in the program of Fig. 5, a pair consisting of ‘4’
and the signal “success” is returned; otherwise a pair
consisting of 'EOF’ and the signal “failure” is. ("4’ is
simply a flag.) If a ““success” returns, ‘4’ is assigned to E
and “%'D’E” is executed, causing the internal procedure
D to be invoked with the argument ‘4’, whereupon the
display screen is refreshed. If a ““failure” returns, ‘EOF’
is assigned to E, and “P(E)” is executed, whereupon an
error message 'EOF’ is displayed.

4.4 Interface Between KE and MCL

The enter command (@) of Table 1 conceptually in-
vokes an MCL program, in an obvious transliteration,
as follows:

enter:
loop
call module M returns(A);

&[X(A):

1

2 IID:.

3 L=80; ?#=1/%:L=-L; Pu10O+L+L4L;

5 sw! .

6 ' '3

7 T=7; N(%);

8 <

9 2T<=0:1; T=T-

10 2(.N(#)) :0m. /c('), G=5;

1 P(G P); P=P+L

12

13

1

15

16

17

18

19

20

21

22

23

2k

25 5

26 Sm! !
27 ' '3
28 A=I(A);

29 ? A=0 : ( G=C(®); ?G='':0=S; P(G,1120) )

30 o7 A= : ) :om8; P(8,960) )

3 ,7 A=2

32 27 A=3

33

34 Ja

Fig. 6 The X-module in MCL.

1 &[M:

2 4(E:

3 M=G();

; ;P:;'; (81011 5115);

o ar,X: (°Y-" (2 CAREE R F AN
? 2E": :2'D'E, P(E) Ha1IED;
8 &[D(E)
18 ?E-".!!S
2?3E=,'/" X: ($'IO32'-Y X, ; Xt - R
M 2%>3] (“-x3' Xixary . A i('§(Y)) s X=I(E);
12 J&;
I
< ?XZ'E':(2X<> 1), IIFX >

15 & ’

Fig. 7 The main module M in MCL.

H. Kakupa and T. Tsun

if success
then exit
else change the active file name to A
end loop;
Thus, the M-module is activated by a module call. If it
returns with “‘success”, the enter command is completed.
Otherwise, the active file is changed to that one specified
by the user, and the M-module is invoked again. No
construct is available for switching the active file in MCL.

5. Implementation

Implementation of KE is rather obvious. One par-
ticular implementation of KE on a FACOM 230-45S
computer [7] is as follows:

The internal files use a doubly linked list structure.
The elements are blocked with a certain blocking
factor, and are stored in a direct-access disk file, which
in fact accommodates all the internal and control
program files. Each internal file, in addition to the
doubly linked list, has four pointers (record numbers)
pointing at the top line, the bottom line, the current
line, and the saved line, respectively. The saved line
pointer is used for marking a point in an internal file.

The control program files use the same linked list
structure as above. They have only two control variables
each: the location of the first element of the linked list,
and the size of the microprogram.

The main controller is wired-down and written in an
assembly language. The MCL compiler includes a syntax-
directed top-down analyzer. Each module declaration,
after being compiled, enters a separate control program
file. The MCL monitor consists of 33 primitive routines,
one process controller, two separate stacks (for integers
and strings), and one cache area in which microprograms
are loaded. To minimize the runtime memory consump-
tion, the object code normally resides on a disk file.
The terminal drivers provide uniform interfaces to the
four terminals. There are a number of primitive routines
corresponding to the MCL I/O functions.

We had one nasty problem: our operating system used
the EBCDIC code, while the terminals used various
variants of the ASCII 7-bit code. As a compromise, an
extension of ASCII was introduced. Code conversion
from EBCDIC to this code, and vice versa, are performed
within the handlers of file-mode read and write com-
mands. No other parts of the program see EBCDIC.

To minimize memory consumption, the file access
module, the MCL compiler, and the MCL monitor are
overlaid. So are the four terminal drivers. KE consumes
only 24 KB of the main storage with a satisfactory
response time.

As our environment happened to be batch, KE had
to be very small in order not to obstruct other jobs.
This restriction of storage affected the design of MCL
and its implementation. Even in a time-sharing system,
however, a small working set is always welcome. More-
over, by pursuing low storage consumption, we were



A Double-Layered Text Editor

forced to make the system compact and well-structured.

Given a set of primitives for handling internal files as
well as terminal drivers, it is an easy task to implement
KE. Our experience was that only 20 man-days were
required for assembling KE from parts of another editor
(a forerunner of KE having a single-layered organiza-
tion).

6. Experiences

6.1 A History

KE evolved out of a conventional display-based text
editor, for which we can only cite [8] as a very remote
ancestor. It was developed locally around 1974 by the
first author, and had a single-layered organization. It
had ten internal files 0, 1, * - -, 9. The current line pointer
pointed at a line rather than a line boundary.

This single-layered editor was used as a daily tool for
about two years within the authors’ environment as well
as in some other sites, and underwent several enhance-
ments and modifications. However, the process of the
change was slow, chiefly because any modification
required reprogramming in an assembly language.

During the period the need for a macro facility be-
came apparent. Various designs extending the existing
command syntax were considered, but none of them
satisfied us completely. Enough extensibility always
seemed to contradict integrity, especially with respect
to command delimiters. After several agonizing trials we
reached the conclusion that a double-layered organiza-
tion should be used. A version of KE was first imple-
mented in October 1976, and its first test was the writing
of a microprogram simulating the external behavior of
the single-layered editor.

From that time on, the evolution of the command
repertoire proceeded fast. We were now able to test new
ideas and users’ suggestions quickly. We no longer had
to worry about the impact of a change beforehand.
We could simply make a change in the MCL source
program, compile it, and test it. We could revert to the
original system any time if the change did not please us.

Change of colors, extensive use of function keys, and
the like were later additions. Some of them did require
reprogramming in the kernel, but the effort was always
minimal because most of the logic could be supported
by MCL programs.

In retrospect, it was a big plus for us that we had in-
timate interaction with the users. We could ask a user
whether he liked a change prompted by his suggestion
before it was frozen. The turn-around time was very
short, often a matter of minutes. We feel that such an
environment is essential in developing software such as
a text editor.

Of course, casual users need not know MCL. More
skilled ones may wish to write MCL programs them-
selves. Several people actually developed their own
editors on KE. Among them, perhaps the most promi-

7

nent is Sado’s light-pen oriented editor for S1[9]. It al-
lows the user to do most editing operations by simply
pointing at appropriate points on the screen. Sado
succeeded in building a smooth man-machine interface
by writing a big MCL program.

6.2 Examples of the Changes

The following are some of the changes we made in
our microprogram during the above-described process
of evolution.

Keeping a command on the screen. In early versions of
our microprogram, we were erasing a command string
in the command input area after it was executed, but it
was a poor idea: we often wished to review the command,
or even reuse it. We decided to leave the executed com-
mand on the screen, simply returning the cursor to the
home position. It now became possible to move the
cursor to the end of the command by pressing an off-
line key, and then press the send-key to reissue the
command.

Anchored searches. It is desirable to be able to search
for a string that begins at the first column of a line. We
first introduced a V-command for doing this by an
analogy to the U-command. Only after installing it we
realized that this naming was awkward; what name
could we use for an anchored H-command? For a more
systematic naming, we prefixed a non-alphabetic
character ‘" to the commands. But this alternative was
also unsatisfactory because the character, which is at
the right end on the keyboard, was not easy to type on
our terminals. Finally, we decided on the idea of prefix-
ing the character A (for ‘“‘anchored”); AU did an
anchored search, and AH, an anchored search with
deletion. This naming turned out to be comfortable.

A utility library. In addition to conventional text
editing commands, several utility operations were
introduced. Some of them are: J (for generation of JCL
programs for the local operating system), ZCOMPARE
(for comparison of two internal files), and ZCONC
(for concatenation of two lines).

The reader may have been shocked by the liberal
ad hoc commands in the anchored search and the
utility call commands. As for anchored searches, it may
indeed be better to extend the syntax of search patterns
to include a head-of-line mark, a tail-of-line mark, and
the like. We have partly done this on a trial basis in the
C-command. In general, however, ad hoc commands
don’t hurt too much in the KE environment. The reason
seems to be that, by intimate interactions with the
users, even ad hoc commands can capture some of the
underlying psychological realities.

6.3 Non-text-editing Applications

KE is a powerful tool beyond text editing. For
example, elementary pretty printing can be done on
KE.

KE is useful for rapid prototyping in interactive
systems. The experimental system built on KE some-



times turns out to be practically usable. For example,
a multi-font typer program was built in this way.

Fig. 8 illustrates a system, built overnight on KE, for
designing graphic patterns. Points are specified by the
light pen, and, upon hitting a function key, line segments
are drawn by the computer. We could design representa-
tions of some Chinese characters. Fig. 9 shows the result
of our first experiment. The two Chinese characters
represent “Tokyo”.

7. Discussions

7.1 Advantages and Disadvantages

By now it should be clear that our double-layered
organization comfortably provides extensibility and
flexibility necessary for quick experimentation and
modification. As discussed in the preceding chapter,
this aspect of KE was of a real help in improving the
command system of Chapter 3.

An additional, less obvious advantage of the double-
layered organization can be found in the insulation be-
tween the concrete realization (implementation) of a
command, and its use in editing. An MCL program
can be constructed in the editing mode, but before it
can be invoked, the file mode must be entered, because
a compilation of MCL programs can be done only in the
file mode. The users cannot accidentally destroy a
command during ordinary use of the editor.

Other minor advantages are procedural style and
machine independence. A command written in the
procedural style is much more manageable than one in
a command style for those users familiar with conven-
tional programming languages. In the general structure,
KE does not depend on the particular machine or
operating system. KE is easily implementable in other

Fig. 8 Drawing figures with a light pen.

H. Kakupa and T. Tsun

environments.

A possible disadvantage is that our organization
could consume more resources than conventional single-
layered organizations. In particular, the time for inter-
preting the microprograms could be a problem. Our
experience is that a KE-based editor is somewhat slower
than directly coded ones, but the difference is so small
that the flexibility by far overweighs the additional
resource consumption.

7.2 Comparison with TECO

There is an alternative to our approach: we could
incorporate an extensive macro facility. This has been
done in several existing editors, notably TECO[4]. In
TECO, there are two kinds of commands, i.e., basic
commands and macro commands. Basic commands are
wired down, and cannot be changed. Macro commands
are constructed from basic commands (and from other
predefined macro commands). By issuing a macro
execution command with a specified storage name
representing a special store (the Q-register) containing a
sequence of commands, TECO can execute the sequence
of commands, or a macro. (It is also possible to specify
an external file in which a sequence of commands
resides.) Certainly it is multi-layered. However, one big
difference is that, in TECO, the lower level can be seen
from the user, i.e., the two levels cannot be insulated.

As for extensibility and flexibility, TECO is compara-
ble with KE. However, there are following points.

a. Two classes can be distinguished among macro
commands: those created by the casual user for
one-time use, and those that are carefully designed
and implemented for use as standard tools. In
TECO, both must be created by the same mech-
anism, while in KE, they can be distinguished.
The one-time commands can be serviced by a

Fig. 9 “Tokyo” written in Chinese characters.



A Double-Layered Text Editor

microprogrammed easy-to-use macro facility (e.g.,
E-command of Table 2).

b. In TECO, basic commands cannot be undefined or
redefined.

c. In defining a macro command, we sometimes wish
to define substructures on which to base the
implementation. In KE, this can be done by
defining internal procedures, while in TECO,
there is no convenient equivalent.

d. In TECO, macro commands have a predetermined
format. The prompting symbol, the escape symbol,
and the like are fixed. The format of error mes-
sages is also fixed. In KE, no such restrictions
exist.

As for insulation and security, KE is significantly

better than TECO. In fact,

a. The commands which are not intended for general
use should be hidden from the eyes of the user.
In TECO, we often need such a hidden command
because internal procedures are not available.
All that we can do, however, is to define and call
subsidiary commands. There is no easy way to
insulate them from the others. If the user makes
a typographical error, he might inadvertently
invoke one of these commands, and be surprised.

b. In TECO, macro definitions are usually contained
in the Q-registers. There is no protection mech-
anism for them. If the user changes the content of
the Q-register, a disaster might result.

Finally, TECO suffers from its command style. Thus
in TECO, the basic commands have been designed for
on-line editing, and are not necessarily suitable for
writing complex macro definitions. It requires skillful
(tricky) techniques which would normally be used only
for coding in a very low-level programming language.
An MCL program is much more lucid.

7.3 A Comparison with EMACS

We now compare KE with EMACS, an independent
effort [5]. EMACS was started from TECO, it extended
and improved the command language, and grew into
something else. The original EMACS was written in a
TECO-like language, while post-EMACS systems were
written in Lisp [5, p. 20. EMACS has many things in
common with KE: it is highly extendible; it is in a way
double-layered; its command definitions, given in a
“library”, are protected from on-the-fly modifications
during an editing session, and so on. It is designed for a
full-duplex terminal, has a lot of luxurious features,
which makes it a huge system.

We admit that EMACS is superior in the following
points:

(1) explicit provision of a library facility;

(2) self-documenting; and

(3) tighter coupling with the user in editing sessions.

Thus, in KE, the users must establish and follow
suitable conventions within his community if command
definitions are to be shared as a library. In this respect,

EMACS is certainly better.

EMACS’s on-line documentation is enviable. Here
we could only point out that the KE system is so small
and simple that we have much less need for extensive
on-line documentation.

As for (3), we had no choice. Our operating system
had only half-duplex terminals. Our approach would
have been different had the operating system supported
full-duplex communications.

On the other hand, we feel that KE is better in the fol-
lowing points:

(1) separation between the file and the editing modes;

(2) simplicity of the system and of the language

MCL;

(3) Dbetter user-service.

Thus, the user is better protected from errors be-
cause anything he does in the editing mode cannot
affect an external file or a compiled microprogram. This
contributes to the simplicity of editing mode com-
mands. The user need not even think about operating
system functions while he is within the editing mode.

We acknowledge that a command calling the operat-
ing system would be a nice addition to the internal
command repertoire. It is important, however, that
the editing and the operating system commands do not
intertwine. As Card, Moran and Newell [10] have ob-
served, one of the important dimensions to the per-
formance of a user-computer system is ‘‘concentration”,
i.e., the smallness of the number of things which the
user must keep in mind while using the system.

As for (2), MCL is designed explicitly as a language
for writing editor commands. It does not contain
anything beyond basic text processing. This has made
KE compact, easy to implement, maintain, and transport.
It could be implemented on a microcomputer if one so
wishes. We could even microprogram our ‘‘micropro-
grams’’.

To the best of our judgment, KE seems to provide
better user-service. It has a simple organization. Users
can easily understand KE and MCL. In fact, several
people have succeeded in developing their own com-
mand systems on KE without the help from the authors,
see Section 6.1.

7.4 Areas for Further Improvement

We admit that MCL requires improvements in the

following directions.

(1) The identifiers are too restrictive. One-letter
identifiers are not sufficient. (This particularly
troubled Sado [9] since his MCL program was
much bigger than ours.)

(2) The string manipulation primitives are weak.
More powerful pattern matching is needed. In
fact, an attempt to introduce more powerful
matching in the U- and H-commands within the
present framework resulted in intolerably slow
implementations.

(3) We need better cosmetics and more syntactic



10

sugaring.
(4) We need some more primitives such as date/time
interrogation.
Another area is KE’s interface to the operating system.
It is not convenient that the file mode is wired-down.
We have a plan to redesign KE to enable micro-coding
of the file mode. (This will make a library facility
available as a fringe benefit.) Moreover, It would be
desirable to introduce more flexible directory structures
such as trees.

Acknowledgment

The authors are grateful to Izumi Kimura for his
patient guidance and help in crystallizing the ideas of
this paper. Many people, too numerous to mention, as
users provided precious feedback to the design of KE
and MCL. We thank them. Special thanks are extended
to Kazno Ushijima and Naomi Fujimura for giving us
a chance to transport KE to their machine. Thanks are
also due to Akinori Yonezawa for helpful comments,
and to Craig Everhart and R. M. Stallman for discus-
sions.

References
1. DukstrRA, E. W. The Humble Programmer, CACM 15, 10

H. Kakupa and T. Tsun

(Oct. 1972), 859-866.
2. Grisworp, R. E,, Poacg, J. F. and PorLonsky, I. P. The
SNOBOLA Programming Language, 2nd ed. Prentice-Hall, Inc.,
Englewood Cliffs, N.J. (1971).
3. GriswoLp, R. E. and HansoN, D. R. An Overview of SL5,
SIGPLAN NOTICES 12, 4 (April 1977), 40-50.
4. Digital Equipment Corporation: DEC System 10 TECO
Text Editor and Corrector Program Programmer’s Reference
Manual, DEC-10-ETEE-D, Digital Equipment Corporation,
Maynard, Mass., (1972).
5. StarLman, R. M. EMACS The Extensible, Customizable,
Self-Documenting Display Editor, 4I Memo No. 519, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology
(June 22, 1979).
6. KAKUDA, H. and Tsui, T. A Double-Layered Text Editor,
Research Reports on Information Sciences, No. C-28, Department
of Information Science, Tokyo Institute of Technology (March
1980).
7. Fujitsu Limited: A Guide to FACOM 230-45S, FACOM
230-45S 45EX0002E-1, Fujitsu Limited, Tokyo, Japan.
8. DeutscH, L. P. and LaMPSON, B. W. An Online Editor, CACM
10, 12 (Dec. 1967), 793-799.
9. Sapo, K. Building a Display-Oriented Text Editor on a
““Microprogrammable” Kernel, in preparation.
10. Carp, S. K., Moran, T. P. and NeweLL, A. The Keystroke-
Level Model for User Performance Time with Interactive Systems,
CACM 23, 7 (July 1980), 396410.

(Received August 11, 1980: revised October 19, 1981)



