Consistent Annotations for Scope Rules

MaAsATO TAKEICHI*

This paper gives several consistent specifications for the scope rules of block-structured languages. They are
considered as annotations for the scope rules defined in existing languages. Annotations will help the user to
understand the scope rules and give unambiguous definitions of the rules to the implementor. Our annotations aim
at providing a concise description for the user and deriving efficient algorithms for implementing the scope analysis

routines in compilers.

In Section 1, the motivation of our research is presented. Section 2 introduces a simple model for the scope and
gives several definitions including one for the traditional scope rules. In Section 3, annotations using simple opera-
tors are presented and their consistency is proved. Section 4 gives another kind of annotation which is proved to
be consistent with the previous ones. This is useful in implementing scope analysis routines. In Section 5, a new
kind of scope rules is introduced and annotations developed in previous sections are modified. Section 6 is devoted
to discussing the scopes not treated in this paper. And the concluding remarks are given in Section 7.

1. Introduction

Both users and implementors of a programming
language need a description which is comprehensible and
unambiguous. Notation such as Backus-Naur form
(BNF) has been widely used to specify the syntax,
whereas notation for describing the semantics has been
developed much slower. Natural languages have been
generally used to describe the semantics with the syntax
specified by BNF. Recently, several kinds of formal
definition of the semantics have been proposed [1, 2].
Such definitions sometimes require the user of the
language to follow lengthy formulas for understanding
the grammar. The complexity of formal definition for
existing language is the largest problem in describing
the semantics. Although some part of the problem is
due to the logical and semantical irregularities of current
languages [3), it would be difficult to develop a practical
language concisely defined by some formal method
proposed today. If such formal definition were given for
providing the common standard of the language,
additional informal description would be preferable for
most users.

Many languages evolved during the period of progress
in the formal semantics have been originally defined by
traditional and informal method [4, 5, 6, 7). Among
several problems found in such informal description, the
scope rules of identifiers have been argued again and
again. Although there seems no difference in interpreta-
tion of addition of integers, the scope rules are likely to
differ in several implementations. Correct understanding
of the scope rule is most important for the user to write
modular programs. Therefore, the scope rule is
necessarily described in some formal way avoiding

*Department of Computer Science, The University of Electro-
Communications.

Journal of Information Processing, Vol. 5, No. 2, 1982

voluminous definition of the semantics of the whole
language. A quick and convenient method is to annotate
the scope rules by means of mathematical notation.
This paper gives several consistent annotations for the
scope rules, which include so-called closed scope in
addition to traditional open scope. Although one may
take any of these annotations as definition of the scope
rule and others as different interpretations for the rule,
we will give a definition in the next section and consistent
annotations thereafter. These annotations aim also at
providing convenient algorithms for implementation.

2. Simple Model for Scope Rules

In the traditional scope rules of Algol-like languages
such as Pascal, an identifier is declared in a block and is
automatically inherited in all constituent blocks unless
the identifier is redeclared in inner blocks. The definition
of the identifier is not visible outside the block in which
the declaration occurs. Such automatic inheritance with
restricted visibility of identifiers is called an open scope.

Formulas in predicate calculus or lambda calculus
obey similar scope rules. In a lambda expression Ax.A,
for example, variable x is bound to 4 and it is inherited
in all subexpressions in 4. Such bound variable cor-
responds to the declared identifier in programming
languages.

In order to describe the scope rules formally, we will
define a class of formulas which models the block struc-
ture of programming languages. Although this simplifica-
tions is not essential, it is useful to present our annata-
tions concisely.

Definition (Class of formulas F)
Symbol of F
S1) Variables x, y, z,- - -
S2) Scope control symbols {, |, >, [,] and comma
)

Consistent Annotations for Scope Rules

Formula of F .
F1) Variable x is a formula in F.
F2) If x is a variable and A4,,-'-, 4, (n=1) are
formulas in F,
{x4,, -

F3) Only the formulas specified by F1) and F2) are
formulas in F.

-+, A, is a formula in F.

Here, we exclude symbols like the logical connectives
in logical formulas. If such symbols were included with
the restriction that they do not affect the scope of
variables, the following discussion could be done
similarly. Symbols [and] will be used in Sec. 5 for
extending the class of formulas so that it reflects new
kinds of scope rules.

Abbreviation (List of formulas)
A) If A, -+, 4, (n=1) are formulas in F, a list

Ay, e, A,
is abbreviated as

A.

Using A), formula by Definition F2) is written as
{x|]A). Formula {x|4) is a model of a block which
contains a declaration for identifier x and block body
A, e.g., a fragment of Algol-60 program:

BEGIN REAL x;
A
END.

Note that the above definition of formula reflects nested
blocks in programming languages.

We will allocate unique Jocation to each symbol in
a formula. For simplicity the location is assumed to be
the ordinal number from the left of the formula. The
location is represented as superscript of the symbol.
Locations assigned to scope control symbols are usually
omitted. Every occurrence of variable x' in a formula of
the form (x‘|A) is called a defining occurrence of x at i.
Other occurrences of variables are called applied
occurrences. The scope rules defined in programming
language state that each applied occurrence of an
identifier should be identified with which defining occur-
rence of the same identifier. In order to represent such
identification relation, we will assign an identification
tag to each applied occurrence of variable in a formula.
The identification tag is attached to the variable as a
subscript. Hereafter, when we refer to the formula, it is
assumed that each symbol has the location and each
applied occurrence of a variable has an identification tag.

Definition (Equality of formulas)
Formulas 4, and A4, are equal if
1) symbols in formulas 4, and A, located at the same
location are the same, and

107

2) applied occurrences of variables in formulas 4,
and A, at the same location have the same
identification tag.

Equality relation between A, and A, is written
as A;=A,.

Definition (Constituent of formula)
If a formula B is of the form {x'|4,, -+, 4,) then

A,,- -, A, are immediate con tituents of B.

A formula A is a constituent of B, either

1) if 4 is an immediate constituent of B, or

2) if A is an immediate constituent of a constituent

of B.

A formula A is embraced by B if A is a constituent of B.

In this case, B embraces A.

Definition (Open scope rule)
If every applied occurrence of variable x in formula
A has the identification tag j, it is the location of the
defining occurrence of the same variable x located at
the smallest formula of the form (x/|4) embracing
that applied occurrence. If no such defining occurr-
ence, j=0.

This definition of the open scope rule is commonly
used in interpreting the scope rules of Algol-60 [8].

Definition (Raw and refined formulas)
A formula in which every applied occurrence has
identification tag O is called a raw formula.
A formula in which every applied occurrence has an
identification tag assigned according to the scope rule
defined as above is called a refined formula.

3. Operational Annotation

Our next approach to describe the scope rules is based
on operations which are applied to any formula to yield
the refined formula. Such transformation preserves the
structure of the original formula. This property will not
be stated explicitly hereafter. Our approach here comes
from the notation used in the definition of Algol-N [9].

We will define two operations r and s to specify the
transformation. These operations are defined according
to the structure of the formula.

Definition (r-s)
rl) r(x)=x}
12) r({xA)=<x"Ir(s(4; i/x)))

sl) s(x}; kjz)=x} if x=z,

x!; otherwise
$2) s((X'|A); kfz)=<x'|s(4; k/z))
where
I‘(.Z)=T(A1), R r(An)
and

s(A; kjz)=5(A,; k/2), -
when A=4,,"--, A4,

*» S(4y; K/2)

108

Operation r is applied recursively to constituent for-
mulas and operation s gives identification tags to
variables. Rule r2) represents the effect of the declaration
and Rule s2) does its inheritance to inner blocks.

We can state the open scope rules in terms of these
operations.

Annotation (r-s)

If A is a raw formula, the identification tag assigned
to each applied occurrence of a variable in 7(4) is the
location of the defining occurrence with which it should
be identified.

If an applied occurrence of a variable in r(4) has
identification tag 0, there is no defining occurrence
for that occurrence at all.

Example 1.

A=Y IKxx0°, ¥o2D, x6°))

r(A) = r(s(°Kx81x8°%, ¥62, x6°) 5 2/x)))
=P IKx®1x3°, 62D, Xx5°D))
=PI (Cx8Ix30, v67) 5 SIv))s x3°))
= 2Ky Ir(<x®)x3° ,)’52», x5%)
= PP IR Ir(s(x3°, ¥525 8/%))), x3°>)
=P IKxIr(x%, ¥52)), x3°))
=<FIY IR x50, vi2D, x3°0)

Note that the identification tag for x at location 10 has
been changed twice,

Lemma 1.
If formula A is of the form{x*| B}, then every applied
occurrence of variable x in r(4) has identification tag
not less than k.

Proof is immediate from Definition (r-s) above. Recall
that the structure of formulas are preserved by opera-
tions r and s.

Theorem 1.
If A is a raw formula, r(A) is the refined formula.
Proof.
Let x! be an applied occurrence of variable x in r(4).
We will show that j is the correct identification tag
of the refined formula.
Casel. j=0
In this case, there is no defining occurrence of x,
{x*|B) where B embraces x*. If such k ever exists,
j=k>0 follows from Lemma 1. This contradicts
Jj=0.
Case2. j>0
Assume that formula (x*|B) embraces x/.
Lemma 1 states that j>k. This holds for any
formula of the form {(x*|B). It is obvious that j
really is equal to k0 if (x*°|B) happends to be the
smallest one, and kO is the largest such k. That is,
Jj=kO0.

M. TAKEICHI

Annotation (r-s) for the open scope rule is straightfor-
ward from the informal specification described in the
first paragraph in Sec. 2. It is, however, inefficient if we
apply the operation to implementation of scope analysis
routine. More sophisticated annotation using similar
operations would be convenient for implementation.

Definition (r'-s")
ry re)=x
r2) rixA)=<xr(s'(4; ilx))
s s’ kD) =x; if x=z,
x4 otherwise
§2) SKXNAD; ki) =X |A) if x=2,
(x'|s'(4; k[z)) otherwise
where
r'(A)=r'(4,), - -+, r'(4,)
and
s'(A; klz)=5'(A,; k[2), - -
when A=4,, -, A4,.

+ 8'(Ay; k[2)

Here, we can see the restricted inheritance of declara-
tions in rules r'2) and s'2).

Annotation (r'-s)
Annotation using 7' and s’ is obtained by simply
replacing r in Annotation (r-s) by r’.

Example 2.
For the same formula 4 as Example 1,
r(A)=<x*r (s PP I<xB1x°, y6?>, x6°)5 2/x)))
= (2P (I8 10, 8%, x3°D))
= (KPP (CxB1xa%, ¥62)5 SIY), x3°))
= P01 (Cx®xg° ’}’52»’ Y
=AY KRB (' (60, y52 5 810D, x3°D)
=PI ICxE %, 252D, x2°))

Now, we want to establish the consistency of Annota-
tions (r-s) and (r'-s’).

Lemma 2.
For any formula 4, any variable z, and any location k,
r'(s'(4; kfz))=5'(r'(4); k/z).
That is, r’ and s’ are commutative.
Proof.
By induction on the nesting depth d of { |) construct.
Casel. d=0
Assume A=x}.
r(s'(xs; kf2))=r'(x}) if x=2z, r'(x}) otherwise
=x} if x=z, x| otherwise
S (6h); kfz)=5'(xi; ki)
=x} if x=z, x, otherwise

Consistent Annotations for Scope Rules

Thus, r' and s’ are commutative.
Case 2. Assume that the maximum depth of (| >
in formulas A4,,---, 4, (n=1) is 420, and r’ and s’
are commutative for these formulas. Then we will
show that these operations are commutative for

formula{x‘|4) of depth d+ 1, where A=4,, ---, 4,.

r(s'Kx'|AY; kfz))
=r'({x'|A)) if x=z, r'({¥'|s'(4; k/z))) otherwise
=<xX|P(s'(4; ifx))) if x=z,
X\ (s'(s'(A; k/2); i/x)))> otherwise
S'(r((xAD); kfz)=5"(KxIF (s'(4; ix))>; kz)
=X (s'(4; ifx)) if x=2z,
(xS (P (s'(4; ifx)); k/z)) otherwise
By the induction hypothesis, the last formula
becomes
(s’ (s'(r'(A); i x); Kfz)) if x#2
={(Xs'(8'(r'(A); kfz); ifx)) if x#2z
from a basic property of s’.
That is, ' and s’ are commutative.

Lemma 3.
For any formula 4, any variable z, and any location %,

r'(s'(4; kjz))=r'(s(4; k[2)).
Proof.
By induction on the nesting depth dof |) construct.
Casel. d=0
Assume A =x}. Proof is immediate.

Case 2.

Assume that the equality holds for all the 4,’s in 4.

r(s({x"| A ; k/z))
=r'({x'Is(4; k/z)))
=X (s'(s(A; kfz); i[x))>
={X'5'(r'(s(4; k[2)); i/x)) from Lemma 2.
={X|s'(F(s'(A; k/2)); i/x)> from hypothesis
=X (s'(s'(A; k[2); i/x))) from Lemma 2.
=r(s'((x"|4); k/2))

Lemma 4.

For any formula 4, any variable z, and any location k,
r'(s'(4; k/2))=r(s(4; k/[z)).

Proof proceeds similarly as above using Lemmas 2
and 3.

Theorem 2.
For any formula 4,

r'(A)=r(A4).

That is, Annotations (r-s) and (r'-s’) are consistent.

Proof is immediate from Lemma 4.

109

4. Annotation Using Environment

In the previous section, two annotations using primi-
tive operations have been given, where the substitution
operators s and s’ play a role in assigning identification
tags to applied occurrences. When these operations are
applied to a list of formulas, some constituent formulas
may remain unchanged which are possibly changed by
later substitution. This is because the substitution
operates one variable at a time and the formulas are
necessarily scanned many times. Such operations are
inconvenient for efficient implementation. If we have all
the substitution parameters k/z for all the variables con-
cerned, we can assign proper identification tags to all
applied occurrences through a single scan of the list of
formulas. In order to realize such algorithm, we will
introduce a kind of representation for environment of the
scope.

Definition (Environment)

Class Env of Environment Functions

Envl) @, isin Env.

Env2) If @ is in Env, z is a variable, and k is a
location, ®{k/z} is in Env.

Env3) Only functions defined by Envl) and Env2)
are in Env.

Every @ in Env is a function

®: Variable— Location

defined by

®1) Dy(x)=0 for any variable x.

®2) If the function is of the form ®{k/z},

O{k/z}(x)=k if x=2z,
®(x) otherwise
Environment function @ is a representation of the
symbol table which is commonly used in many
implementations of the scope analysis routine. We now

define an operation to refine formulas with the use of
environment.

Definition (R)

RI) R(x; ®)=xb,
R2) R(<x'IA'>,<D) (HIR(A; Ofi/x}))>

where

R(A; ®)=R(4,; D), -, R(A,;)
when

A=A4,, -, 4,

Annotation (R—®)

If A is a raw formula, the identification tag assigned
to each applied occurrence of variable in R(4; @) is
the location of the defining occurrence with which it
should be identified.

Example 3.

110

Given the same formula 4 as Examples 1 and 2.
R(4; ®o)= (IR ICx®Ix0%, 167D, x6°; @o{2/x}))
=GP IR Ix6%, ya?;
®o{2/x}{5/y}, R(x5*; @o{2/x}{5/¥})>>
=PI IR(x, p6%; @o{2/xH{S/yHB/xD)),
x5
= PP, p32D, x3°55)

Lemma 5.
For any formula A4, any environment ®, any variable
z, and any location k,

R(4; Ofk/z})=5'(R(4; ©); k/z).
Proof.
Case 1. Assume A=x}.
ROxy; @{k/z})= X200
=xiif x=z,
Xip(x) Otherwise
5'(R(x}; ®); kfz)=5'(xo(x); k/2)
=xtif x=z,
Xlp(x) Otherwise
That is, R(x}; ®{k/z})=s'(R(x}; ®); k/z).
Case 2. Assume that
R(4,; D{k/z})=5"(R(4,; ®); k/2)

for p=1,---,n.
We will prove that for A=4,," - -, 4,,

R(x4); Bik/z})=5"(RKX'|A); ©); k/z)
holds.
R(X'|A); ©{kfz})
={X'|R(4; O{k/z}Hi/x}>
=X’ (R(A; ®{k/z}); i/x)) from hypothesis
={x|s'(s'(R(A; ®); k/2); i/x)> as above
5'(R(Kx'A>; @); k/2)
=5'(CX'|R(A; Dfifx})); k/2)
=5"({X|s'(R(4; ®); i/x)); k/z) from hypothesis
=X (R(A; ©); ifx) if x=2z,
(Xs'(s'(R(A ; ®); i/x); k[z)) otherwise
In general,
s'(s'(4; kf2); ijx)=5'(4; i/x) if x=2
and
s'(s'(4; kf2); i[x)=5'(s'(4; i|x); k[z) if x#z
hold.
Thus,
R(X'|A); ©{k/z})=5'(RKX|A); ©); k/2).
Lemma 6.
If R(4,; ®)=r(4,) for p=1,---, n, then
RKX|4); ®)=r({x'|4))

M. TAKEICHI

where A=A4,, "+, 4,.
Proof.
R({x'|Ay; ®)=<{x'|R(4; ®{i/x}))

={x'|s'(R(A; ®); i/x)) from Lemma 5
={x'|s'(r(4); i/x)) from assumption
={x|s'(r'(A); i/x)> from Theorem 2
=X (s'(4; i/x))) from Lemma 2
=r'({x!|4}) from Definition r'2)
=r({x'|A)) from Theorem 2

Theorem 3.
If A4 is a raw formula,

R(4; Og)=r(A).

That is, Annotations (R — @) and (r-s) are consistent.

Proof is immediate from Lemma 6 and Definition ®1).

5. Annotation for Closed Scope

The scope rules of Algol-60 can be specified by one of
the annotations described so far. The same annotations
are applicable to specify large parts of the scope rules in
Pascal [4]. That is, the scopes dependent solely on
declarations and definitions in blocks have the same
property as those of Algol-60.

However, a new kind of scopes is observed in modern
languages such as Modula-2[5], Euclid[6], and Ada[7],
which are considered as successors of Pascal. In these
languages, the programmer can specify explicitly which
identifiers are or are not inherited by inner blocks and
which ones are visible outside the block where they are
declared. Such kind of scope is called a closed scope in
contrast to the open scope. In Modula-2 and some
other languages, explicit inheritance of identifiers from
outside of the block is specified by an import list, and
explicit widening of identifiers declared or exported in
the block is specified by an export list. Next program
segment illustrates import and export lists in Modula-2
modules, which are controlled by the closed scope rule.

MODULE M;
VAR x, w:---;
MODULE N;
IMPORT x;
EXPORT y;
VAR vy, z:--;
BEGIN: - -
{x, ¥, and z are visible}
END N;
BEGIN: - -
{x, y, and w are visible}
END M;

We will extend the class of formulas F so that it contains
formulas reflecting the closed scope rule, and describe

Consistent Annotations for Scope Rules

consistent annotations for such extended scopes.

We could define the closed scope as we have done for
the open scope in Sec. 2. It becomes, however, tedious
because the visibility of identifier can be restricted and
widened across the block boundaries. We do not define
the closed scope in this way and instead give extended
annotations based on previous ones in this paper.
Although the definition is not given, one may choose
any of annotations as definition. In fact, complex rules
generally require operational specification.

Definition (Class of formulas F——extended version)
Definition of Fin Sec. 2 is augmented by the next rule.
F2') If i, e, and x are variables, and A,," ", 4,

(n=1) are formulas in F,

[ileb1x14)

is a formula in F.

Locations and identification tags are assigned to new
formulas as before. Variables i and e are also considered
as applied occurrences and have identification tags. The
raw formula and the refined formula in the new class of
formulas are straightforward extension of old ones.

Definition (Exported variables)
Function E over formulas giving a location-variable
pair is defined as follows:
El) If A is of the form x}., E(A)=¢
E2) If A4 is of the form (x‘lB), E(A)=¢
E3) If A is of the form [i%|e}.|x°| B], E(A)=b/e
where ¢ is a distinguished element.
If A=A,, -, A,, a list of b/e pairs

E(4,), ---, E(4,)
is abbreviated as E(A).

We now need to define a class of legal formulas which
is characterized according to the restriction on the
defining, importing and exporting occurrences of
variables.

Definition (Legal formula)
A formula 4 is legal if
L1) A is of the form x¥., or
L2) A is of the form {(x°|B) and x does not appear
in variables of E(B), or
L3) Ais of the form [i¢.|e}.|x°| B], i #e, i #x, and both
x and i do not appear in variables of E(B).

Legality of the formula could be tested in the course
of refinement by operators. In the following discussions,
however, all formulas are assumed to be legal. If one
wishes to specify the scope rules including the rule for
legality, it can be annotated in two stages; one for
legality, and one for scopes.

Definition (r-s extended version)

111

Rules for [||[] construct are augmented.
e3) r(liZley|x"1 4]
=[izIs(e}; c/x, E(D)x|r(s(4; c/x, afi, E(A)))]
s3) s(liglep |x|A; k/2)=[s(i5:; k/z)lep|x°| A]

where
s(Askyfzy, o KpfZm)=S(5(- - -5(A; ky[21) - -); KmlZm)
and
s(4; p)=A.

Annotation (r-s extended version)

If A is a raw formula, the identification tag assigned
to each applied, importing, or defining occurrence of
variable in r(4) is the location of the defining, import-
ing, or exporting occurrence with which it should be
identified.

Definition (r'-s’ extended version)
Rules for [||{] construct are included.
v'3) rlisley x| 4])
=[i%|s'(eb.; c/x, E(A)|x°Ir'(s'(4; c/x, afi, E(AD))]
$'3) s'([islep |x| A; kjz)=[s"(i%:; k/z)\ep|x°| 4]
where
S'(Askyfzys -5 mlza)
=s'(s"(- 5" (4; ky/21); -+ *); KmlZm)

and

s'(4; p)=A.

Annotation (r’-s’ extended version)
Annotation by +’ and s’is obtained by simply re-
placing r in Annotation (r-s) above by r'.

Note that the augmented rules for r-s and r’-s’ opera-
tions are very similar. In fact these operations are the
same for the closed scope.

Example 4.

A=[z3] y51x°I[x31¥6 1y 31x6°, ¥5), ¥5°1
r(4)=[z3|s($; 6/x, 11/y)Ix°|
r(s([x3| ¥ | ¥*31x5°, ¥67), ¥5°; 6/x, 2/z, 11/y))]
_[zol.}’11|x6|’([x6|y61|}’13|x0 !yO.,])syfl
=[z§|yt: xCIxgls(p5"; 13/»)1 "3
r(s(x® ,yo ; 13/y, /%)), ¥33
=[z3| ¥} Ix°Ix3| 131 ¥ 31x8°, ¥13), ¥it

Definition (R—® extended version)
New rule is augmented for [|||] construct.
R3) R(i e} |x|4); @)
=[R(i3:; D) R(e}.; D{c/xHE(ADPIx|
R(4; ®{c/x}{afi}{E(A}]

112

where {E(A)} denotes

{E(4,)}, -+
when A=A, -, A,

- {E(4,)}

Annotation (R— ® extended version)

If A is a raw formula, the identification tag assinged
to each applied, importing, or exporting occurrence
of variable in R(A4; ®,) is the location of the defining,
importing, or exporting occurrence that it should
identify.

Example 5.
Given the same formula as Example 4.

R(4; o) =[R(z5; o)IR(¥5; o{6/x}{11/y})|x°|
R(x31¥6"1y*31x8°, ¥87), ¥5°;
@o{6/x}{2/z}{11/y})]
=[z31y}11x°I[R(x3; ®o{6/x}{2/z}{11/y})|
R(y5'; ®o{6/x}{2/z}{11/y}{13/y})|
R(x3%, 57 ; ®o{6/x}{2/z}{11/y}{9/x}
{13/y)], »3%
=[z31y111x°11xgl 131 ¥ 31x5%, ¥13), 30

Theorem 4.
If A is a raw formula,

r(A)=r'(4)=R(4; D).

That is, Annotations (r-s), (r'-s’), and (R—®) are all
consistent.

Theorem 4 can be proved in the same way as previous
lemmas and theorems.

6. Reservation

We have presented annotations for the scope rules in
which the scope is related to the syntax. That is, both
open and closed scopes are delineated by prescribed
syntactic units such as blocks, procedures, and modules.
However, Pascal and its successors have a different kind
of scopes, which we will call a remote scope. The remote
scope is associated with records in Pascal, where the field
identifier is introduced in type specification of the
record and is used through qualification by variable
identifier of that type. Since this kind of scope rules
depends on the semantics of the language, i.e., types
and variables, our annotations for syntactic scopes are
not directly applicable. It requires a new concept to
formulate such scope rules. We do not discuss scopes
of this kind in this paper.

M. TAKEICHI

7. Conclusion

We have described the scope rules for the simplified
formula which is a model of the block structure of
programming languages. Application of our annotations
to actual programming language is straightforward.
However, as described in the previous section, our
annotations are limited to open and closed scopes which
are common in modern programming languages. There
needs to be other annotations for specific scope rules.

One may formulate the scope rules in general by the
use of attribute grammar [10], where the static semantics
specifies the scope rules of the language. Description of
the static semantics requires other semantic features of
the language and is necessarily written in informal way.
Denotational formulation is probably the most
sophisticated description of the semantics of the whole
language. Though as it is, the description is usually very
large. Annotating the scope rules is intended to supple-
ment the definition of existing languages by a few
additional mathematical notations.

Our method will give a standard interpretation for the
rules which are described informally. Moreover, one of
the consistent annotations is available for implementors
and the other for users. As mentioned previously,
annotations using environments are most convenient for
implementing the scope analysis routines. Algorithms
based on these annotations are applied to actual im-
plementation [11].

References

[11 Gorpon, M. J. C. The Denotational Description of Program-
ming Languages, Springer-Verlag (1979).

[2] Hoark, C. A. R. An axiomatic basis for programming. Comm.
ACM 12 (1967), 576-580.

13] Hoareg, C. A. R. and LAUER, P. E. Consistent and complemen-
tary formal theories of the semantics of programming languages.
Acta Informatica 3 (1974), 135-153.

[4] Jensen, K. and WIrRTH, N. PASCAL User Manual and
Report. Springer-Verlag (1974).

[SI WirTH, N. MODULA-2. Berichte des Institut fuer Informatik
Nr. 36, ETH Zuerich (1980).

[6] Lampson, B. W., HORNING, J. J., LONDON, R. L., MITCHELL,
J. G. and Popexk, G. L. Report on the programming language
Euclid. SIGPLAN Notices 12 (February 1977).

[7l Reference Manual for the Ada Programming Language.United
States Department of Defense (1980).

[8] Yonepa, N. and Nosmita, K. Lectures on ALGOL 60.
Kyoritsu-shuppan (1979). (In Japanese)

91 SmauTi, T., et al. ALGOL N. C ii Math ici Uni-
versitatis Sancti Pauli 21 (1972), 1-72.

[10] KRISTENSEN, B. B., MaDsEN, O. L., MOLLER-PEDERSEN, B.
and NyGaArD, K. Beta Language Proposal. Norwegian Computer
Center Working Note No. 5 (1979).

{t1] TakeicHi, M. Name identification for languages with explicit
scope control. Journal Information Processing S (1982) 45-49.

(Received September 24, 1981 : revised November 16, 1981)

