Generation of Binary Trees from Stack Permutations

ICHIRO SEMBA*

An efficient algorithm generating all binary trees from stack permutations is presented. The average running
time per binary tree is shown to be bounded by a constant.

1. Introduction

By binary tree traversal[l, §2.3.1], a binary tree on n
nodes is represented by a certain permutation of integers
1, 2,---, n. Let BT(n) be the set of binary trees on n
nodes.

We consider the following scheme.

Scheme. Label the nodes of a binary tree T € BT(n)
1 through 7 in inorder and read the labels in postorder.

We denote by x(T)=x; x,°** x, the permutation
obtained by this scheme and call it inorder-postorder
permutation. For a binary tree T, € BT(9), an inorder-
postorder permutation x(T,) is equal to 154327986.

a binary tree To

If T, #T,, where T,, T, € BT(n), then x(T,)#x(T,).
Thus the binary tree corresponding to a given inorder-
postorder permutation x=x, x,*** Xx, is determined
uniquely and denoted by B(x). Therefore it follows that
B(x(To))=T,.

In this paper, we present an efficient algorithm for
converting in a linear time from an inorder-postorder
permutation x to a binary tree B(x). Inorder-postorder
permutations are shown to be stack permutations. We
have already obtained a generating algorithm[2] for all
stack permutations. Thus, combining these two
algorithms, we can establish an efficient algorithm
generating all binary trees. The average running time per
binary tree is shown to be bounded by a constant.

*Department of Pure and Applied Sciences, College of General
Eduction, University of Tokyo.

Journal of Information Processing, Vol. 5, No. 2, 1982

2. Preliminaries

In this section, the set of inorder-postorder permuta-
tions is shown to be equal to the set of stack permuta-
tions. Let X(n) be the set of inorder-postorder permuta-
tions x; X, * X,

Property 2.1 Let x; x,°:- x,€ X(n) (n=3). There
are no elements x;, x; and x, such that x;<x, <x; (i<
j<k).

Proof. By the definition of inorder-postorder
permutation, if x;<x; (i<j), then X, is contained in the
right subtree whose root is x;. By the same reason, if
x;<x, (j<k), then x, is not contained in the subtree
whose root is x;. This means that x; is not contained in
the subtree whose root is x; and i <k. Thus we have x;<
x;. Namely, there are no elements x;, x; and x, such that
x;<xp<x, (i<j<k). This completes the proof.

Let P(n) be the set of stack permutations. A stack
permutation is obtained, by using a stack, from input
permutation 1 2--- n. Knuth[l, §2.2.1, Ex 5] has
proved the following property.

Property 2.2 A permutation p, p,'** p, (n=3)
is a stack permutation, if and only if there are no ele-
ments p;, p; and p, such that p;<p,<p; (i<j<k).

Theorem1 Forn>1,
X(n)=P(n).

Proof. For n=1, 2, the result is immediate. For n>
3, by Property 2.1 and 2.2, it follows that X(n)<P(n).
On the other hand, by the fact that |X(n)|=|BT(n)|=
(2M/(n+1) (Catalan number) and |P(n)| =(Z")/(n+1), we
obtain X(n)=P(n).

Namely, an inorder-postorder permutation is a stack
permutation.

3. Converting Algorithm for Converting from an
Inorder-postorder Permutation to a Binary Tree

In this section, we give an efficient algorithm for
converting, in a linear time, from an inorder-postorder

Generation of Binary Trees from Stack Permutations

permutation x; x,--- x, to a corresponding binary
tree B(x, x,-:+ x,). Suppose that a binary tree has
Jj—i+1 (i<j) nodes labeled i through j in inorder. When
we read the labels in postorder, we obtain a sequence
t;°- - t;_;+y- Wesayit is an inorder-postorder sequence
on {i," - -, j}. Namely, an inorder-postorder permutation
is an inorder-postorder sequence on {1, 2,---, n}. We
show a basic property of inorder-postorder permutations.

Property 3.1 Let x,=i (1<i<n). The permutation
Xy X,°°+ X, is inorder-postorder permutation, if and
only if the subsequence x,- - x;_, is inorder-postorder
sequence on {l,---, i—1} and the subsequence x;- -
Xx,-, is inorder-postorder sequence on {i+1,---, n}. If
either i=1 or i=n, then the corresponding subsequence
is empty.

Proof. From the definition of inorder-postorder
permutation, it is easily proved.

By Property 3.1, a binary tree B(x, x,-:- x,) is
obtained using the following recursive construction rule.

(I) Ifn=1, then B(x,) is a binary tree with one node.

(D) If n>1, let x,=i (1<i<n). Then B(x; x, -
x,) is the binary tree formed by joining the left
subtree B(x,:-- x;_;) and the right subtree
B(x;' -+ x,-,) to the root x,. If either sub-
sequence is empty, then the corresponding
subtree is empty.

The algorithm generating all stack permutations
examines the stack permutation from right to left. Thus,
in order to combine the generating algorithm and the
converting algorithm efficiently, we give a converting
algorithm which examines the inorder-postorder
permutation (i.e. stack permutation) in a similar way.
It is shown in Fig. 3.1 in a PASCAL-like notation. We
use the following notations mainly after Knuth
[1, §2.2.1]. We write stack to denote its top element.
We write stack<¢ to mean that the stack is made empty.

1. begin
2 stack¢¢; stack0; stackEx,; root: =x,;
3. for i:=n—1 downto 1 do begin
4 if x,>stack then
5. rson (stack):=x,
6. else begin
7 rson (stack):=0; wstack;
8 ‘while x, <stack do begin
9. Ison(w): =0; wéstack
10. end;
11. Ison(w):=x;
12 end;
13. stack&x;
14. end;

15. rson (stack):=0; w¢stack;
16. while w>0 do begin Ison(w):=0; wstack end
17. end.

Fig. 3.1 Converting algorithm.

103

line . stack
mumber | ! | *| top b(t*f::om w lzls;) ‘}1 5 12m3m; 5 |root
2 50 5
3 412

7 05 0
11 2 0
13 20

3 314

5 2 4 0
13 420

3 213

7 20 (4 2 4 00
i1 32 4 00
13 320

3 111

7 203 32 4000
9 012 032 4000
11 1032 4000
13 10

15 0|1 1032]|/04000
16 0/01032(04000

Fig. 3.2 The process of the converting algorithm for x;x;x3x,
xs=13425.

We write stack<=w to mean that the value w is inserted
on the top of the stack. Similarly, the notation w<=stack
is used to mean that the variable w is set equal to the
value at the top of the stack and this value is deleted from
the stack. This notation is meaningless, when the stack
contains no values. The converting algorithm uses in-
teger variables root, Ison(i) and rson(i). The integer
variable root points to the root of the binary tree B(x,
X, * x,). The integer variable Ison(i) (rson(i)) points
to the left (right) subtree of the root i. If the left (right)
subtree of the root i is empty, then the integer variable
Ison(?) (rson(i)) is set to 0. As an example, the process
of the converting algorithm for x; x, x; x4 xs=1342
5 is shown in Fig. 3.2.

Theorem 2 The converting algorithm constructs the
binary tree B(x, x,' - x,) corresponding to a given
inorder-postorder permutation x; x,- - - x, (n=2).

Proof. The proof proceeds by induction on n.
Basis. n=2. The converting algorithm constructs the
binary tree B(12);@ and the binary tree B(21);P\q.

Inductiv estep. n>2. Suppose that x,=i(l <i<n). By
line 2, the elements 0 and x, are put on the stack and root
issetto x,. Then the substring x;_, - - - x,_, is processed
fromright to left. Since x,_, > x,(=i), byline 5Srson(i) is
set to x,_, and by line 13 the element x,_, is put onthe
stack. When the element x;_, is compared with the top
of the stack, by line 7, 8, 9, 10 the elements of the stack,
without the element 0, are taken off the stack, because
X;-1<xj(i<j<n). Since the element x,=i is taken off
the stack lastly, by line 9 w is set to i and by line 11
Ison(i) is set to x;_,. By line 13 the element x;_, is put
on the stack. By the inductive assumption, the binary
tree corresponding to the substring x; - x,_; is
constructed. Its root is x,_,. Then the substring x, - - -

104

X;_, is processed from right to left. By the inductive
assumption, the binary tree corresponding to the sub-
string x,--- x;., is constructed. Its root is x;_,.
Since root=i, lIson(i)=x,_; and rson({)=x,_,, the
binary tree corresponding to x, x,- - - x, is constructed.
Its root is x,=i. For x,=1, n, the proof can be done in
a similar way. This completes the proof.

Property 3.2 The element x; (1<i<n) is inserted
only once on the top of the stack and delected only once
from the stack.

Proof. By the converting algorithm, it is easily shown.

Theorem 3 The converting algorithm terminates in
a linear time.

Proof. By Property 3.2, it is obvious.
4. Generating Algorithm for all Binary Trees on n nodes

In this section, we establish an efficient algorithm
generating all binary trees on n nodes.

Let a permutation x=x; x, -* X, be an inorder-
postorder permutation and a permutation y=y, y,--*
y» be lexically the next inorder-postorder permutation.
By Theorem 1, both x and y are stack permutations.
Thus we can use a generating algorithm [2, Fig. 3.1] for

1. begin
2, {initialize}
3. fori:=1 10 ndo begin
4, xy:=i; Ison(i):=i—1; rson(i): =0
5. end;
6. OOt =Xg;
7. output (root, Ison, rson);
8. k:=n—1;
9. while k>0 do begin
10. {save the index k(x)}
11. km:=k;
12. {generate next inorder-postorder permutation
13. (stack permutation) and determine its index k(x)}
14, nextperm (x,, . . ., Xa, k);
15. stack(¢; stack<0; stackCx,; root:=x,;
16. if km=1 then ii:=1 else ii:=km—1;
17. for i:=n—1 downto /i do begin
18. if x;>stack then
19. rson (stack):=x;
20. else begin
21. rson (stack):=0; wéstack;
22, while x, <stack do begin
23, Ison(w):=0; w¢sstack
24, end;
25. Ison(w):=x;
26. end;
27. stack&x;
28. end;
29. if km=1 then begin
30. rson (stack):=0; wéstack;
31. while w>0 do begin Ison(w):=0; wéstack end
32. end; -
33, output (root, Ison rson)
34. end
35. end.

Fig. 4.1 Generating algorithm for all binary trees on n nodes.

I. SeMBA

all stack permutations and its properties. The following
property is found in Semba [2, Property 3.1]. Let the
index k(z) be the rightmost such that z;<z;,, in a per-
mutation z=z, z, - 2z, (k(z) is defined to be zero,
if z is lexically the last permutation).
k(z)= max {i|lz;<z.4}.
1gisn—-1

Property 4.1 If x=x, x,° - x, is not lexically the
last inorder-postorder permutation (stack permutation),
then y;=x; (1<i<k(x)—1) and {yix) > Pu} = {Xaapr
<o x)

Let STACK(x;) be the contents of the stack, when
the element x; is put on the stack in the converting
algorithm.

Property 4.2 If k(x) =2, then
STACK (Xy(x)— 1) = {Xil¥i&{Xp(xy- 15 * - Xn} X < Xig(xy -1}

Proof. Let the right-hand side of the equation be
R(x). By the converting algorithm, it follows immediately
STACK(xy(x)- 1) S R(x).

If we assume that x; € R(x) and x; ¢ STACK (x(x)- 1),
then there exists an element x; such that x; <x; <xy(y—,
(k(x)—1<i<j). This contradicts Property 2.1. Thus we
have STACK (Xy(;)—1) 2 R(x). This completes the proof.

Property 4.3 If k(x)>2, then
STACK(X(x)- 1) =STACK(yi(xy-1)

Proof. By Property 4.1 and 4.2, it follows

immediately.

Since the contents of the stack is monotone increasing,
by Property 4.3 the output for the subsequence y,- - -
Yrexy-2 is the same as the output for the subsequence
Xy''" Xgxy-2- Thus, when k(x)=2, we can use the
output for x, x,--* x, and save running time. When
k(x)=1, we cannot use the result of x; x," - x,. Thus
we have to convert y,,y,°"* ¥, to a binary tree B(y,
Y2+ ya) in a linear time. Therefore, combining the
generating algorithm [2, Fig. 3.1] and the converting
algorithm, we can establish the generating algorithm for
all binary trees on n nodes. It is shown in Fig. 4.1. It
uses a procedure output (root, Ison, rson) which prints
out the binary tree. In order to make our algorithm short
and clear, we use a procedure nextperm (x,,* " *, X,, k)
which generates the next inorder-postorder permutation
(stack permutation) and determines its index k(x). The
value of the index k(x) is set to the integer variable k.
The integer variable km is used to save the value of the
index k(x). We note the index k(x) becomes zero, when
the inorder-postorder permutation (stack permutation)
is lexically last.

5. Analysis of Generating Algorithm

In this section, the average running time per binary

Generation of Binary Trees from Stack Permutations

tree is shown to be bounded by a constant.

Let g(n,h) be the number of inorder-postorder
permutations (stack permutations) x=x;, x5, -, X,
such that k(x)=h. The following property has been
shown by Semba {2, Property 4.4].

Property 5.1 Forn>1and O<h<n-1,

g, h)=(n—}ll+h) _(n;_l-ll-h)

For the binary tree corresponding to the lexically
first inorder-postorder permutation (stack permutation)
1 2--- n and those binary trees corresponding to
inorder-postorder permutations (stack permutations)
Y=Y1 Y2 " ¥, such that k(x)=1, we have to perform
a constant times n operations. For those binary trees
corresponding to inorder-postorder permutations (stack
permutations) y=y, y,--* y, such that k(x)>2, the
number of operations performed is bounded by a con-
stant times n—k(x)+ 1. Thus, on the average the running
time per binary tree is on the order of T(n), where

nol n+h-—1 n+h—1
e g ool -(00)
1 2n) ’
n+1\n
Property 5.2 Fornx>1,
T(n)<4.

T(n)=

Proof. Since

o))+ () e

and
2 e-ren() =(2) +(05)
T@n)=
we {2+ (o) - op-{(2)+ (o))
i)
_ (n_:lfi "'%— (n—';(;);n?-) _23;11)) (2:> -1

- 1 [2n
n+l\n

105

<4n+2
n+2
<4,

Thus, we obtain the above formula.

Theorem 4 The average running time per binary tree
is bounded by a constant.

Proof. The average running time per inorder-
postorder permutation (stack permutation) has been
shown to be bounded by a constant by Semba [2,
Theorem 2]. Thus, by Property 5.2 it is easily proved.

Note that we do not count the time needed to print
out the binary tree.

6. Concluding Remarks

Various algorithms [3, 4, 5, 6] for generating all binary
trees have been proposed. However, the average running
time per binary tree is not shown to be bounded by a
constant. Thus our algorithm is more efficient than these
algorithms.

Acknowledgement

The author would like to thank Prof. T. Shimizu and
Prof. A. Nozaki for their hearty encouragement. The
referee’s comments are also acknowledged.

References
1. Knuth, D. E. The Art of Computer Programming: Vol. 1:
Fundamental Algorithms, 2nd ed., Addison-Wesley, Reading,
Mass. (1973).
2. Semea, L. Generation of stack sequences in lexicographical
order, this jurnai, vol. 5, No. 1, (1982) 17-20.
3. Knotr, G. D. A numbering system for binary trees, Comm.
ACM, Vol. 20, No. 2, (1977) 113-115.
4. RUsKEY, F. and Hu, T. C. Generating binary trees lexicogra-
phically, SIAM J. Comput., Vol. 6, No. 4, (1977) 745-758.
5. Rotem, D. and VaroL, Y. L. Generation of binary trees from
ballot sequences, J. ACM, Vol. 25, No. 3, (1978) 396-404.
6. SoLoMON, M. and FINKEL, R. A. A note on enumerating
binary trees, J. ACM, Vol. 27, No. 1, (1980) 3-5.

(Received September 10, 1981 : revised January 21, 1981)

