A Method for Synthesizing Data Retrieving Programs

AKINORI YONEZAWA*

A method is presented for synthesizing programs which retrieve stored data. Program specifications are given
in the form of queries to a relational database. Queries are expressed in a language based on predicate calculus.
Given a query at the conceptual level together with a description of physical representation of relations (or pre-
dicates), a program is synthesized which manipulates stored data at the physical level. The method of synthesis is
based on successive transformations of queries by applying ‘“‘rules” which express procedural interpretations of
logical formulas. Queries expressed by recursively defined relations (or formulas) are successfully handled by our
method. A target language (in which synthesized programs are written) is required to support functional argu-
ments. Some aspects of future programming styles are discussed at the end of the paper.

1. Introduction

Program synthesis is the systematic derivation of a
program from a specification. Most research activities
in program synthesis rely on theorem proving techniques.
In this approach, a program specification is stated as a
theorem in some theory and proving the theorem is
first attempted. If a successful proof for the theorem is
constructed manually or mechanically, a program is
synthesized by systematically extracting information
from the proof. A variety of techniques have been devel-
oped, corresponding to the variety of underlying logic
systems: (e.g., /G69/, and /WL69/ which are based on
the resolution-type proof procedures and /HT79/ based
on Gentzen’s Natural Deduction System and /S79/based
on the Goedel interpretation.) Another approach taken
by Burstall and Darlington/BD78/ and Manna and
Waldinger/MW79/ is based on the direct application
of transformation or rewriting rules to the program
specification. The recent work by Manna and Waldinger
/MW80/combines induction and transformation rules
within a single deductive system.

The deductive approach taken by Reiter /R78/ and
Chang /C78/ in relational data bases can be viewed as
synthesis of data base access programs in which a query
is considered as a program specification. Their approach
also uses theorem proving techniques. This paper
presents a new method for synthesis of data retrieving
programs, and also propose a new approach to program
synthesis in the domain of relational data bases. Our
method is based on successive transformations of
queries by a set of “rules” which express procedural
interpretations of logical formulas in which queries are
stated. Given a query and the description of physical
representations of relations (, both of which are stated in
a first order language), a program is synthesized which
actually manipulates physically stored data. Although
no implementation exists presently, our approach is

*Dept. of Information Science, Tokyo Institute of Technology,
Oh-okayama, Meguro-ku, Tokyo, Japan, 152.

Journal of Information Processing, Vol. 5, No. 2, 1982

machine-oriented and the design of implementation is
being undertaken. Fairly complex programs manipulat-
ing tree structures have been synthesized by hand
simulation /Y81/.

2. A Simple Example

To illustrate our program synthesis method, we con-
sider the following situation. A relation ROOM(Sect,
Num) which associates a room number with the section
name it belongs to is defined at the conceptual level
J/AN75/ in a data base. Suppose a user issues a query Q to
know the set of room numbers which belong to the
INFO section. Regarding the relation ROOMC(s, n)
as a two-place predicate (which gives the truth value
of a statement that a room number n belongs to a section
s), this query is expressed in a familiar notation of
mathematics as follows:

Q={n [ROOM(INFO, n)}

What the user wants is an actual enumeration of the
elements of the set specified by this notation. To obtain
such an enumeration, we must first know how the relation
(defined at the conceptual level) is actually implemented
at the physical (or internal) level and then we must
compose a data base access program which does this
enumeration by manipulating physically stored data.

To describe how such a relation is implemented at the
physical level, we use a language of first order logic.
Suppose the ROOM relation viewed as a predicate is
implemented as a list of pairs each of which consists of a
section name and a room number. (See Figure below.)

ROOML

This can be expressed as:
ROOM(s, n) =
Ix(HEAD(x)=s A TAIL(x)=n A x<ROOML),

where ROOML is a constant list, s and n are free
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variables. In our language, e</ is an abbreviation of
the two-place predicate which asserts that e is an element
of a list /. (The definition of the list membership and an
axiomatization of lists are given in /CT77/.) HEAD and
TAIL are one-place functions which give the first part
of and the second part of a pair, respectively. We call
this kind of logical equivalence which expresses the
internal representation of a relation, a physical
representation definition (PRD). Substituting this PRD,
the query is transformed into:

{ n |Ax(HEAD(x)=INFO A
TAIL(x)=n A x<ROOML)} -1
This is logically equivalent to:
{n] V (HEAD(i)=INFO A TAIL(i)=n)}

iR «OOML

where i is a new variable. By equality substitution we get:
{TAILG)| V (HEAD(i)=INFO)}
i<ROOML

Furthermore, this set is equivalent to:
U {TAILG)| HEAD(i)=INFO} 2-2)

i<ROOML

The set expressed above is a collection of the second
part of i which is an element of the list ROOML and
whose first part is INFO. This suggests a procedural
interpretation of the set notation (2-1), or a program
which enumerates all the elements of the set. The follow-
ing program is an example of such an interpretation.

S«¢; L«ROOML;

while L#NIL do
begin i«car(L);
if HEAD(i)=INFO then S«S u {TAIL(i)};
Lecdr(L)
end;
return(.S) rP-1

This program is, in turn, a procedural interpretation of
the set expressed by the original query Q.

We have been following somewhat tedious logical
steps to obtain a program for the query These steps can
be reduced and generalized by introducing a few types of
transformation rules. By noting that the existentially
quantified variable x in (2-1) behaves as an index which
ranges over the list elements of ROOML, we adopt an
E-quantifier elimination rule of the following form.

(ES3) {1 3AP() A t=5()} = {s(x)| P(2)}

where o is a newly generated variable, s(y) is a term
constructed from variable y. Applying this rule to (2-1)
with P(y) being HEAD(x)=INFO Ax<ROOML and
s(») being TAIL(x), we obtain:

{ TAIL(i) | HEAD({)=INFO A i<«ROOML} (2-3)

We can (procedurally) interpret this notation in the same
way as (2-2) and obtain the program (P-1).
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To generalize the coding process, we introduce an
operator pr which transforms a formula or set notation
into a program that gives a procedural interpretation of
(2-2). The above coding process (from (2-2) or (2-3)
to (P-1)) can be viewed as an application of the following
rule.

(CRS2) pr({s(x)|P(x) A xocL}) #=>
generate[pr(L); Ax.pr(P(x)); Ax.pr(s(x))]

Note that L is a set or list and that oc stands for the set
or list membership predicate. Generate [/;p;s] is a
procedure which takes a value argument / and two func-
tional arguments p and s. This procedure returns a list
of distinct items each of which is obtained by applying a
function s to each element (in list /) which satisfies a
condition (predicate) p. We assume that ignoring the
order of elements, the returned list represents the set
specified by {s(x)|---}. Ax.<body) is a notation for a
procedure definition declaring x as a formal argument
and {body) as the procedure body. Thus the right-hand
side of (CRS2) denotes an invocation of ‘“‘generate”
with the following three parameters;
—a list pr(L) which is the result of application of pr
to L,
—a procedure Ax. pr(s(x)) whose formal parameter is
x and the body pr(s(x)), and
—a procedure Ax. pr(P(x)) whose formal parameter is
x and the body, pr (P(x)).
Applying the rule (CRS2) to (2-3) by instantiating P(x)
with HEAD(/)=INFO, L with ROOML and s(x) with
TAIL(/) and also using other simple coding rules, the
following program (written in the fashion of LISP meta-
expression/M65/) is obtained.

generatefROOML; Ax.equal[car[x]; INFO]; Ax.cdr[x]]

Note that cdr, car, equal etc. denote procedures (func-
tions) defined in LISP. We deliberately leave the defini-
tion of ‘“generate” unspecified /Notel/* because many
implementations are possible in many programming
languages as long as they allow procedures as param-
eters of procedure invocation and support list or set
structures. Note that if the target language does not
support set structures, list structures are viewed as sets.

*/Notel/ An example of the body of “generate” in
LISP is:
generate [/ ; p; s]=nd[
[null[/]-NIL;
plcar[/]]—cons[s[car[/]]; generate [cdr[/]; p; s]];
T— generate[cdr[/]; p; sI]

where nd[/] eliminates repetitive elements in list /.
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3. Logical Language and Query Language

As illustrated in the previous section, both data base
queries and physical representations of relations (defined
at the conceptual level) are expressed in terms of a logical
language. To present our program synthesis method in a
formal manner and make its scope clear, we first discuss
our logical language.

Roughly speaking, the language is an extension of
first order predicate calculus augmented with equality,
set membership and list membership. Terms, formulas,
sets and queries are defined as follows.

(Terms)

1. An individual constant (written in capital letters) or
variables (written in lower-case letters) are terms.

2. If fis an n-place function symbol (written in upper-
case letters) and ¢,,- - -, tn are terms, then f(t,," -,
tn) is a term.

3. All terms are constructed by 1 or 2.

We assume that list processing functions such as
HEAD, TAIL, CONSTL LIST and an identity function
ID, and a constant symbol NIL are included in the
language. Below we use a special symbol oc to stand for
€ (set membership) or < (list membership).

(Formulas)

1. If ¢ is a term and / is a set or list, then ¢ oc / is a for-
mula.

2. Ift1 and ¢2 are terms, f1=¢2 is a formula.

3. If P is an n-place predicate symbol (written in
upper-case letters) and ¢, --, tn are terms, the
P(t1," - -, ) is a formula.

4. If A and B are formulas, then 714, Av B, AA Band
A— B are formula.

5. If Aisa formula, x is a variable and / is a set or list,
then VxA,3xA4, \/ A and A A are formulas.

xacl xecl

6. All formulas are constructed through 1 to 5.

An n-place relation defined in the data base is con-
sidered as an n-place predicate and user-defined pre-
dicates can always be included in the language.

(Set)

1. { } or NIL is a set which denotes an empty set.

2. If tl,---, tn are terms, {t1,---, tn} is a set whose
elements are all the distinct members among ¢1,- - -,
in.

3. If t(x) is a term containing a free variable x and P(x)
is a formula with free occurrences of x, then
{t(x)]P(x)} is a set whose elements are distinct terms
t(x) such that x satisfies P(x). #(x) and P(x) may
contain other free variables, but #(x) may not contain
bound variables. When #(x) is a variable x itself, ¢ is
considered as an identity function ID.

4. If S1 and S2 are sets, then S1NS2 (intersection),
S1US?2 (union), and S1-S2 (difference) are sets.

5. If S(x) is a set notation containing a free variable x
and / is a s t or list, then | } S(x) (indexed union)

XL

and () S(x) (indexed intersection) are sets.
xcL
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6. All sets are constructed through 1 to 5.

The queries we allow are classified into two types: a
set-type (or open/GMN78/) queries and formula-
type (or closed) queries.

(Query)

. A set-type query is of the form {#(x)|P(x)} defined in
3 of the set definition above, and it requests the
system to list up all the elements.

2. A formula-type query is formulas defined above and
requests the system to return the truth value (yes or
no) of a formula evaluated in the data base.

Since the definition of queries above allows very
general formulas in first order predicate calculus, a
general program synthesis method should include an
algorithm for universal theorem proving. But our
synthesis method restrict itself to queries which can be
answered by searching stored data.

1

4. Logical Transformation Rules

Our method of program synthesis is based on the
successive transformation of queries by two kinds of
rules: logical transformation rules and coding rules. We
shall discuss the former ones in this section.

As the example in the second section suggests, general
algorithmic structures of synthesized programs are
summarized as “Given a source of data items, check
each data item one by one as to whether it satisfies some
conditions and if it meets the condition, do something
on the item or report the truth value of the conditions.”
This general algorithm is usually used in a nested
manner. The list ROOML in the example in the second
section is such a source of data items. Successful synthesis
of efficient programs depends upon the discovery and
choice of data item sources which may be implicit in
formulas.

The implicit sources are often found through
quantifiers in formulas. Simple examples are set
notations and formulas of the following forms.

{s()IM(R(x, y) A yocL)}, 32(P(2) A zocL)

where s(x) is a term containing a free variable x and L
is a set or list. Queries of these forms are evaluated by
instantiating y or z with each element of L one by one.
Thus these existentially quantified variables behave like
index variables ranging over L To express this we
employ the following rules. (Index variables should not
have name conflicts with other variables.)

{s()IAR(x, ¥) A yocL)} = {s(x)IR(x, ) A aocL}
)

(*%

L in the predicates (of the form) xoc L provides the source
of data items in these rules. If no such forms of predicates
are found in formulas, for example,

{sCIFV(R(x, y) A QN I(P(Y) A OO,

IN(P(y) A ycL) = VLP(a)
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we need to create such predicates. The following rules do
this.
(ESD)  {s(x)I3n(R(x, ) A Q())} =
{s()IR(x, @) A a e {yIO(N}}
(ELD IxP(») A QON= V P@®

ae(y1Q(»)}

An explicit set (or list) L in the previous rules () and (*#)
are replaced by one specified by a predicate Q. This
idea is based on more general logical equivalence.

P(x) A Q(x) <> P(x) A x € {t|Q(0)}

Sometimes the sources are hard to find; for example,

{s()13yA(x, »)}, IyB(y)

where A(x, y) and B(y) cannot break into the patterns of
(ES1) or (ELI1). In such cases, we must introduce the
domains of quantified variables. This is expressed as:

(ES2) {s()FyA(x, y)} =
{s(x)|A(x, &) A o € dom(4.2)}
(EL2) WB(y»)= V B[

acdom(B.1)

dom(P.n) denotes the domain of a variable in the n-th
place of a predicate (or relation) P.

For formulas containing universal quantifiers, similar
rules are adopted, the motivation being the same. The
list of transformation rules for quantifiers is shown in
Fig. 1. Rules for other logical symbols and simplification
rules for set notations are given in the Appendix. Besides
these rules, we use the rules for replacement of logically
equivalent formulas, rules for renaming of bound
variables, and rules for equality substitution and rules
for definition substitution. Furthermore, conventional
logical rules (such as 4 A B=B A A) can also be used.

5. Coding Rules

To obtain a procedural interpretation for a set notation
or formula (namely, to translate such a notation into a
program), we use the coding rules listed in Fig. 2. Most
rules are expressed by recursive applications of ihe coding
operator pr. An application of pr to a set notation or
formula results in a procedure (in the target language)
whose arguments contain pr operator applications.
Though procedures (or procedure invocation, more
precisely) in the rules are written in a style of LISP meta-
expressions/M65/, actual implementations of the proce-
dures may be written in other languages as long as
they have the functional argument facility and support
list processing primitives.

The informal meaning of each procedure appeared in
the coding rules is stated below. Note that in i-union
and i-intersect, each element of a list / is used as an
index for generalized union and intersection operations,
and fis a function which generates a list for a given index
value.
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—Universal Quantifier—

(ULD* Y@ -P(yD= A P@

ae{y|Q(»)}

(UL2) VyP(y) = . 0&, Y P(a)
USH*  {s(IVHQ(»)— R(x, y))} =
{s()I( /I\ R(x, ®)) A x € dom (R.1)}
ae{y|Q(»)}
(US2)  {s(x)IVyR(x, y)} =

{s(x)I( A R(x,0) A xedom (R.1)}

aedom(R.2)

—Existential Quantifier—

(ELD)* 3y(P(») A QON= A P@)

aef310(»)}

(EL2) 3yB(y) =>m°¥& b B(a)
(EL3)  3xs(t)=y A P(y))= P(s(1))
(ES1)*  {s()II(R(x, y) A Q(YN} =

{s()IR(x, &) A a € {yIQON}}
(ES2)  {s(x)I3yA(x, )} =

{s()|A(x, @) A a € dom(4.2)}
(ES3)  {t|3y(t=s(») A Py} = {s(MNIP(»)}

*When Q(y)in UL1, USI, EL1 and ESI is of the form yocL,
ac{y|Q(»)}, in the right hand side of each rule, it is simplified
into yocL.
(Note: te{x[xocL} «>tocL)

Fig. 1 Transformation Rules for Quantifiers.

- generate [/; p; s]: list items (without repetition) each
of which is obtained by applying a function s to each
element of / which satisfies a predicate p.

. some [/; p]: ask whether or not some element of a
list / satisfies a predicate p.

« every [/; p]: ask whether or not all the elements of a
list / satisfy a predicate p.

. j-union [/; f]: return a list whose elements are union
of sets each of which is obtained by applying a
function f to each element of a list /.

+ i-intersect [/; f]: return a list whose elements are the
intersection of sets each of which is obtained by
applying a function f to each element of a list /.

6. Recursive Relations and Recursive Programs

To accommodate a wide variety of queries, it is often
necessary to use relations which are not stored explicitly
in the data base, but which are logically derivable from
explicitly stored relations.

When a relation is defined solely in terms of explicitly
stored relations, no complication arises and we can
simply substitute the derived relation by its definition.
But consideration is needed when the definition contains
itself, namely the relation is defined recursively. An
example of such relations is ABOVE(x, y) relation (a
block x is above a block y) which is derived from ON(x,
y) relation (a block x is on a block y) where the ON
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—Set—
(CRS1) pr({x|xocL}) «=> pr(L)
(CRS2) pr({s(x)|P(x) A xocL}) »=
generate[pr(L); Ax.pr(P(x)); Ax.pr(s(x))]
(CRS3) pr({s(x)|R(x, t) A tocL}) *=
i-union[pr(L); At.pr({s(x)| R(x, 1)})]
(CRS4) pr S DL S(2))*=> i-intersect[pr(L); At.
pr(S(2)));S(t) denotes a set with index ¢.
(CRS5) pr(S U T) *=> unionfpr(S); pr(7)]
(CRS6) pr(S N T) *=> intersect[pr(S); pr(7))
(CRS7) pr(S—T) *=> difference[pr(S);pr(T)]
(CRSB8) pr({t1, -- -, tm}) *=list[pr(t1); - - - ; pr(tn)]
(CRS9) pr({n|(P A Q(m)) A (P A R()}) #=
[pr(P)— pr({n|Q(n)}); T—pr({n| R(A)})]

where a predicate P does not contain . (conditional)
—Formula—

(CRL1) pr(s(t)ocL) »=>
some{pr(L); Ax. equal[x; pr(s())]]
(CRL2) pr(‘\{ P(t)) »=> some[pr(L); Atpr.(P(¢))]

(CRL3) pr( /\L P(1)) »= every[pr(L); At.pr(P(1))]

(CRL4) pr(11P) #=> not[pr(P)],
pr(P v Q) *= or[pr(P); pr(Q)],
Pr(P A Q) *=> and[pr(P); pr(Q)]
(CRLS5) pr(t1=t2) *=> equalpr(z1); pr(z2)]
(CRL6) pr(t=NIL) *=> null[pr(?)]
—Term—
(CRT1) pr(HEAD(?)) *= car[pr(t)]
(CRT2) pr(TAIL(t)) +=> cdrpr())
(CRT3) pr(CONSTL(t1, 12))
*=> cons[pr(t1); pr(12)]
(CRT4) pr(ID(t)) *=pr (¢)
(CRTS5) pr({constant-or-variable)) *=
{constant-or-variable)

Fig. 2 Coding Rules.

relation is assumed to be explicitly stored. The definition
is:

ABOVE(q, b)
= ON(q, b) v 3z(ON(a, z) A ABOVE(z, b)).
(Assume that free variables a and b are universally
quantified.)
Using this relation, we can issue a query

Q={e|ABOVE(4, ¢)}

A. YONEZAWA

which requests to return a set of all the blocks below a
specified block 4. To synthesize a program for this query,
first we substitute the above definition for the formula in
the query (after appropriate instantiations of free
variables (a«< A4, b«-e)).

{e| ON(4, e) A 3z(ON(4, z) A ABOVE(z, ))} (6-1)

Our strategy to deal with the recursion is to leave the
recursive occurrence of ABOVE(z, e¢) in the formula
intact and substitute a physical representation definition
of ON for the two occurrences of ON. Suppose the ON
relation is implemented as a list ONL of pairs where the
first part of each pair represents a block on top of a block
represented by the second part. This is expressed as:

ON(a, b)=3x(x <ONL A HEAD(x)=a A TAIL(x)=b)
Substituting the right-hand side for the occurrences of
ON in (6-1), we obtain:

Ix(x<«ONL A HEAD(x)=A4 A TAIL(x)=¢) v

e[3z3x(x < ONL A HEAD(x)=4 A TAIL(x)=2) A
ABOVE(z, ¢))

The existential quantifier on z can be eliminated by
(EL3).
3x(x<ONL A HEAD(x)=A4 A TAIL(x)=¢) V

€|3x(x «ONL A HEAD(x)=4 A
ABOVE(TAIL(x), ¢))

Factoring common expressions by the distributive law,
this is simplified into:
{e|Ix((x <«ONL A HEAD(x)=4) A
(TAIL(x)=e v ABOVE(TAIL(x), ¢)))}
Now we can eliminate the existential quantifier on x by
using (ES1).
{e|(TAIl(x)=¢ v ABOVE(TAIL(x), €)) A
o € {x|x<ONL A HEAD(x)=A4}}
Using a coding rule (CRS3), we obtain:
i-union[pr({x|]x «ONL A HEAD(x)=4});
Aa.pr({elTAIL(x)=e v ABOVE(TAIL(x), e)})]

The second parameter of i-union is transformed by
(CRSS) and a set equivalence rule (SE2) in the Appendix.

i-union[pr({x{x <« ONL A HEAD(x)=4});
Aa. union[pr({e|TAIL(x)=e});
pr({elABOVE(TAIL(), o)})]]

Several applications of coding rules produce:
i-union[generate[ONL; Ax.equallcar[x]; 4]; Ax.x];

Aa.union[list[cdr[a]]; pr({e] ABOVE(TAIL(x), e)})]]

(6-2)

by CRS2, CRLS5, CRT1, CRT2, CRTS5, CRSS.
Here we wish to eliminate the pr operator applied to



A Method for Synthesizing Data Retrieving Programs

{elABOVE(- - -)}. To do so, we need the following special
coding rule which introduces recursive invocations into
the program to be synthesized.

Let Q(a) be a query containing a free variable a. When
the result of coding of Q(a) contains occurrences of
pr(Q(1)) where ¢t is a term, namely,

if pr(Q(a)) becomes Z(pr(Q(1))),
then pr(Q(a))=/1a] where Ax.f[x]=2(fTpr(:)])

Applying this rule to (6-2), we obtain a program for the
original query.
pr({e| ABOVE(4, e)})=p-above[A4]
where
p-above[z]=
i-union[generate[ONL ; Ax.equal[car[x];z];Ax.x];
Ae.. union[list[cdr[a]]; p-above[cdr{«]]]]
Note that the synthesized program p-above[A] does not
terminate if ON(x, x) or ABOVE(x, x) hold for some x.
Recursively defined relations sometimes produce
programs which do not terminate for any input. For
example, if the ABOVE relation is defined in the follow-
ing way:
ABOVE(q, b)=
ON(q, b) v 3z(ABOVE(a, z) A ABOVE(z, b))
the program pp-above[A] synthesized for the same query
{e/ABOVE(4, €)} does not terminate for any physical
representation of the relation ON. The following
derivation explains this phenomenon.
{e|ABOVE(4, e)}=
{e|ON(4, €)} U {e|3z(ABOVE(4, z) A ABOVE(z, €))}
(substitution of definition and (SE2))

=>{e|ON(A4, €)} U {¢|ABOVE(x, e) A
a € {zZ]ABOVE(4, 2)}} (ES1)

Applying coding rules and the special rule for recursion
to this set notation (the same physical representation for
ON is assumed), we obtain the program:

pp-above[4]=
union[generate{ONL; Ax.equalfcar{x]; 4];Ax.cdr{x]];
i-union[ pp-above[A]; Aa. pp-above[a]].

Since an execution of pp-above[4] always invoke pp-
above[A] itself as an actual argument of i-union, this
program always runs forever. This leads to the fact that
our coding process can detect some of the non-
terminating programs (;though the general case is known
to be undecidable). This fact corresponds that compilers
for conventional programming languages would detect
non-terminating programs (see the discussion in Sec. 8.5)

7. Physical Representation of Relations and Domains

Physical representations for the relations exemplified
in Sec. 2 and Sec. 6 are simple list structures of depth
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one, which might be thought of as a sequential file.
In this section we shall consider more complex
representations and show the versatility of our logical
language in expressing various physical representations.
Furthermore, the domains of variables will be discussed.

Suppose two relations, ROOM(Sect, Num) and EMP
(Loc, Name) are defined at the conceptual level in a data
base. If the location of each employee is identified with
a room number in the ROOM relation, the two relations
do not have to be represented independently. The two
relation can be put together and implemented as a single
tree structure, which may be viewed as a hierarchical
files. (See the figure below)

employee list

ORG is the root of the tree structure. The implementa-

tions of ROOM and EMP by this structure are expressed

as:

ROOM(s, n)=3xIp(x <ORG A HEAD(x)=s A
y<TAIL(x) A HEAD(y)=n)

EMP(/, ) =3x3p(x <ORG A y<TAIL(x) A
HEAD(y)=I! A e<TAIL(y))

An implementation of a derived relation EMPSECT(e, s)
defined as

EMPSECT(e, 5) =3z(ROOM(s, z) A EMP(z, €))
can be expressed by

EMPSECT(e, s)=3xIy(x <«ORG A HEAD(x)=s A
y<TAIL(x) A e<TAIL(Y)).

Using this physical representation definition, an
efficient access program for a query Q = {¢| EMPSECT (e,
INFO)} can be synthesized. The actual derivation of a
program which manipulate more complex tree structures
is found in /Y81/.

The ON relation in Sec. 6 can be implemented as a
tree structure in which a block represented by a parent
node is on the block(s) represented by its child node(s).
(See the figure below. ONR is the root.)

- ON(A,B) and ON{A,C) hold.
- ON(C,D) holds.

This physical representation of ON is expressed as:

ON(a,5)=3x(REACHABLE(ONR, x) A HEAD(x)=a A
INy<TAIL(x) A HEAD(»)=b)) (7-1)

where
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REACHABLE(x, y)
=y<x v 3z(z<x A REACHABLE(TAIL(z), y))

When the ON relation is implemented as above, the
physical representation of the ABOVE relation should
be expressed as:
ABOVE(q, b)=

Ix(REACHABLE(ONR, x) AHEAD(x)=a A

I(REACHABLE(TAIL(x), ) A HEAD(y)="b))

7-2)

If we used this definition to obtain the program for a
query {¢|ABOVE(4, ¢)}, a rather simple program
would be synthesized. But we lack a general theory
/Note 3/ to prove the equivalence between the right-hand
side of (7-2) and the following formula which is obtained
by substituting (7-1) for the occurrences of ON in the
definition of ABOVE in Sec. 6.

Ix(REACHABLE(ONR, x) A HEAD(x) = a
3Ny <TAIL(x) A HEAD(y)=b)) v
J3z(Ix(REACHABLE(ONR, x) A HEAD(x)=a A
Iy(y<TAIL(x) A HEAD(y)=2)) A
ABOVE(z, b)) (7-3)

Fortunately we do not need such a theory for the query,
because we can synthesize a program for the query by
directly applying the coding rule for recursive predicates
to (7-3).

Notations of the form, dom (P.n), are used in logical
transformation rules to express the domain of variables
(or “attribute” in the data base terminology) in the n-th
place of a predicate (or relation) P. When we use domains
of variables in the process of program synthesis, actual
enumerations of domain elements must be somehow
provided. We assume that a list of domain elements can
always be prepared for each variable used in relations
which are defined at the conceptual level of the data
base /Note 4/. Such a list is introduced as a constant
list into formulas in our logical language. The following
example illustrates the use of such a list as well as the
treatment of universal quantifiers in our method.

Q={r|VsROOM(s, r)}
This query means “list up rooms which are common to
all the sections.” This is transformed by the rule (US2).
{rl( AN ROOM(a, r)) A r e dom(ROOM.2)}

aedom(ROOM. 1)
The physical representation of ROOM is assumed to be
the one defined in Sec. 2 and dom(ROOM. 2) and dom
(ROOM.1) are assumed as constant lists RNUM (room
number list) and SNAM (section name list), respectively.
Thus,

{rlc A 3Ix(HEAD(x)=a A TAIL(x)=r A
aeSNAM
x<ROOML)) A re RNUM}

Using the rule (EL1) and several other coding rules
(e.g., CRS2, CRL2, CRL3), a program for the query is

A. YONEZAWA

synthesized as:

generatelRNUM;
Ax.every[SNAM;
Aa.some[ROOML;
AB.and[equal[car{B]; af;
equal[cdr(B]; 111

Ax.x]

[Note 3/ The work of Popplestone /P79/ addresses
some aspect of this problem.

[Note 4/ This assumption corresponds to the domain
closure axiom in /R78/.

8. Concluding Remarks

8.1 Optimization

Though the efficiency of a synthesized program
depends mainly upon the simplicity of logical formulas
before the application of coding rules, optimization of
synthesized programs is often useful. For example, when
a synthesized program contains a certain nested use of
‘“‘generate” programs (i.e., an invocation of ‘“‘generate”
appears as an actual argument of another ‘“‘generate”
program), the nesting can be unfolded. Furthermore,
combinations of “‘generate’” and other procedures (such
as “every,” or “‘some”) can be optimized. Typical cases
of these optimizable combinations are given below.

(POR1) generate[generate[l; Ax.p[x]; Ax.s[x]]
Ayqb);
Ayl
= generate[/; Ax.and[p[x]; q[s[x]]}; Ax.c[s[x]]]

(POR2) somefgenerate[l; Ay.q[y]; Ay.s[¥]}; Ax.plx]]
= some[/; Ax.and[p[s[x]]; g[x]]]

(POR3) every[generate[/; Ay.q[y]; Ay.s[y]]; Ax.plx])
= every[/; Ax.or[not[g[x]]; pls[x]]]]

It should be mentioned that Burstall and Darlington’s
optimization techniques /BD77/ for recursive programs
are also applicable. Furthermore, various optimization
techniques are applicable once function calls are ex-
panded into function bodies.

8.2 Target Languages

Our method does not restrict itself to LISP-like
languages as target languages (in which synthesized
programs are written). By extending the logical language
to include appropriate functions and replacing the
coding rules (mainly, rules for terms) with suitable ones,
we can synthesize PASCAL-like programs which use
record structures and pointers.

8.3 Completeness

Our method for program synthesis is ‘“‘complete” in
the sense that for any query written in our logical lan-
guage, we can always synthesize a program for the query.
(See the remark at the end of Sec. 3.) Our method is also
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“complete” in the sense that a synthesized program
returns all and the only answers to a given query if the
synthesized program terminates.

8.4 Theoretical Foundation

To construct a firm theoretical foundation for our
approach is a good research topic. For example, it is
interesting to establish the correctness of our logical and
coding rules in some theoretical framework. Another
example might be to develop a general theory in which
we can show the equivalence of two predicates at least
one of which is recursively defined (See Sec. 7 for an
example).

8.5 Higher Order Functions and Future Programming
Style

The synthesis method presented in this paper
extensively uses functional arguments in the phase of
application of coding rules and thus resulting synthesized
programs are structured through higher order functions.
It is the author’s belief that the use of higher order
functions (i.e. programs which take functions or
programs as parameters or result values) will gain in-
creasing importance in the future programming style,
which will be based on very high level programming
languages.

By ‘“‘very high” level languages, we mean logical
languages or pure applicative (or functional) languages
augmented with data structuring features; we do not
mean natural languages, which we expect will face the
hard barrier of semantic ambiguity before they will be
used as effective specification languages. In this context
our present work can be viewed as one suggesting a
method of translating a logical language in a functional
language: the latter is relatively lower than the former,
though both are still high level languages in the current
standard. Yet in some ten years, with the accumula-
tion of knowledge about various translation (or transfor-
mation) rules the programming method suggested by
our approach will be considered as “compilation” rather
than “‘synthesis.” This view will become more evident
with the availability of machine architectures suitable
for functional programming.
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Appendix

(SE1) {s(x)|B(x)} = {s(«)|B(x) A a € dom (B.1)}

(SE2) {s(x)IP(x) v Q(x)} = {s(x)|P(x)} L {s(x)IQ(x)}

(SE3) {s()IP(x) A Q(x)} = {s(x)|P(x)} N {s(x)IQ(x)}

(SE4) U {s(x)lR(x, 1)} = {s()IR(x, t) A tocL}

(SES) {s(x)l\/ R(x, 1)} = {s(x)|R(x, t) A tocL}

(SE6) {s(x) '{C\L R(x, 1) = DL {s()IR(x, 1)}

(SET) {s(9)|1B()} = {s(@)l € dom (B.1)— {x|B(x)}}

(SE8) {s(x)|lx=c(y) A P(»)} = {s(c(YIP(»)}

(SE9) {x|xe S} =S

(SE10) {s(x)|R(x,t) A P(t) A te{z|]Q(z)}} =
{s(x)|R(x, t) A Q(t)} if Q(x) implies P(x).
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