Topology Preserving Parallel Operations on
Hexagonal Lattice Points

SATORU KAwAr*

A group of parallel local operations with asymmetric windows working on binary images are considered. A
specific condition for those operations, called L-condition, which requires not only the quasi-preservation of
topological structure of binary pictures but also the ultimate annihilation of all components except for the back-
ground, is formulated in terms of adjacency relation among the components of pictures. The operation defined by
the majority function of three-argument is proved to be the one and only one operation which satisfies L-condition

on the hexagonal lattice.

1. Topology Preserving Operation

It is well known that certain types of local parallel
operations preserve some properties of binary pictures
which are defined as subsets of the set of lattice points
in two dimensional space [2, 5]. Binary pictures are
usually represented by characteristic functions whose
domain is the set of all lattice points in question, and
whose range is {0, 1}, ‘I’ and ‘0’ indicating whether a
lattice point is included in a picture or not, respectively.
Operations on binary pictures essentially calculate new
characteristic functions from old ones. By the term
‘parallel’ we mean that the values of new function on all
lattice points are determined simultaneously from the
values of old function.

Among the various properties of binary pictures,
their topology has been considered important because
the basic structures of the pictures are represented by it.
These topologies have been defined by introducing
adjacency relation among the points [3]. One of the sim-
plest topologies is the adjacency tree [4]. The nodes of
the adjacency tree correspond to connected 1- or O-
components of the picture. Two nodes are connected by
an arc when the corresponding two components are
adjacent. The root of the adjacency tree corresponds to
the (possibly) infinite component of the background of
the picture. It has been proved that the graph thus
defined is actually a tree [4].

There is a group of local parallel operations, called
shrinking. A shrinking operation preserves the topology
of pictures in terms of the adjacency tree. Repeated
application of a shrinking operation changes a binary
picture from its original forms into the simplest form
which has the same adjacency tree as the original. Shrink-
ing operation use, in general, some small symmetric
windows for the ‘local’ calculation. In the case of the
square lattice space, 3x3 or 5x 5 windows, the target
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point being located at their centers, are often used.

Local parallel operations with asymmetric windows
have also been studied, among which another type of
topology preserving operation is included [1]. This
operation, which we will name L-operation for the name
of its inventor, also preserves the adjacency tree of
pictures except for the annihilation of single-point-
components. It is this annihilation that enables L-opera-
tion to shrink any non-background component to a
single-point (and then to annihilate it) even if the
original component is not simply connected. The
adjacency tree of the picture is gradually simplified by the
deletions of single point nodes until only the background
node remains.

The purpose of this paper is to determine a necessary
and sufficient condition for an operation with the same
window as L-operation to perform a topology preserving
shrinking in the above meaning. For simplicity, opera-
tions on the hexagonal lattice are concerned. The same
problem on the conventional square lattice would be
more complex because of the difference of cardinalities
of possible parallel operations on both types of lattices,
ie., 2%° to 2%*,

2. Definitions

Let Ix I be the set of pairs of integers. A point is a
member of this set, denoted by the form (i, j). The six
points

(i— 15.]— l)’ (l_ 1)j)9 (’v.]_ 1)’
GJj+D, (+1,/), (+1,j+1)

are called the neighbor of the point p=(j,j), and also
are said adjacent to p. Two subsets S; and S, of Ix/
are adjacent if and only if there exist two points s, € S,
and s, € S, such that s, is adjacent to s,. The concepts
of path, connectedness, and component are defined in the
conventional way [3]. A 1- or O-component C is said
singular if it consists of only one point. We assume that
there is one and only one component whose size is
infinite. We call it the background component.



84

As mentioned before, we use the characteristic
function scheme for the representation of pictures. Let a
point name, say p, represent the value (0 or 1) of the
characteristic function at the point as well as the point
itself. Using this convention, we define our parallel
operations by 3-argument binary functions as

a,—f(a;, ai-1, -1, a;_1.5)

where a;;=(i, j). The geometrical interpretation of this
definition is shown in Fig. 1 in which an oblique co-
ordinate system is used. Let p* denote the value of p
after a single application of an operation.

Given a 1-component C, we define the following 3 sets
derived from C.

Co={plpe C,p*=1},

C™={plpeC,p*=0} and

C*={plp¢ C,p*=1,u(p).C# ¢}
where

(@) ={a;-y,j-1 i-1,5}-
The new set corresponding to C is now defined as
C*=C°u C.

It is worth noting that C* may not be a 1-component

though C is. For a O-component D, the derived sets

D° D, D*, and D* are similarly defined.

We finally define the condition which characterizes the
L-operation as follows. We will call it L-condition.
L-condition
L1: The adjacency tree of the picture after a single

application of the operation is identical to what it
was before the operation, except for the changes
due to L2.

L2: Simply connected components may be annihilated
by a single application of the operation.

L3: The ‘lifetime’ of all components except for the
background are finite, i.e., we can erase all non-
background components by applying the opera-
tion a sufficient number of times.

Subcondition L1 alone characterizes the conventional

shrinking operations. L2 and L3 are the characteristic

features of L-operation. L3 is important for L-condition,

I

Fig. 1 Argument configuration of operations.
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because the identity operation satisfies both L1 and L2.
3. Necessary Condition

We will use several ‘test patterns’ in order to obtain
the set of subcondition of the necessary condition for an
operation f to satisfy L-condition. In what follows, we
will denote f by the set of 8 values

anfl’ i '!f7

where
faijs ai-1,5-1, a;—4,;) is denoted by

f;.,+2ai—1.1-1+4ai—1.1-
Condition N1
Subconditions L1 and L2 imply that no new
components can be created. Then it is seen that
Jo=0
and

fo=1
Condition N2.
Considering L3 together with the ‘isolated point’
pattern, it is seen that
fi=0

and

fe=1.
If f is 1, for example, the original pattern with only
one single-point component will never be converted to
uniform background even if various patterns are
generated below the point.
Condition N3.

Let us consider a pattern in which only the two points
a;_y, ;-1 and a;_y ;,, are ‘I’, while the rest are ‘0’s
(Fig. 2(a)). After the operation, the configulation of
values is changed as Fig. 2(b). Note that we use the
conditions N1 and N2, i.e.,

f (1] =f 1= 0.
From the facts that, in Fig. 2(b),

a;=f2 a;;+1=f4,and
a,; is adjacent to a; ;4 ¢,

(a) (b)

Fig. 2 Two point pattern. Before (a) and after the operation (b).
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it is seen that only one of £, and f, can be 1. It is because
subconditions L1 and L2 say that no two components
should be merged into one. Similarly, only one of f; and
fs can be 0.

Condition N4.

Consider again the ‘isolated point’ pattern. It is easily
seen that, if either one of f, and f, is 1, the isolated point
will travel downward either left (f,=1) or right (f,=1)
foreover. Then, from L3, it is seen that

f2=f4=0-
Similarly
f3=fs= 1.
We summarize N1 to N4 as
fo=fi=2=f4=0,
f7=f;s=fs=f3=1-

In other words, f must be the simple majority function of
three arguments.

In the original paper{1], L-operation is defined on the
square lattice. If we are to consider L-operation on the
hexagonal lattice, taking account of the unique connec-
tivity, say 6-connectivity, we actually obtain the
‘majority’ operation derived above. That is, only the
operation defined by the majority function can satisfy
L-condition.

4, Sufficient Condition

In this section we prove that the operation derived
above satisfies L-condition. Let L, be the operation
defined by the majority function. We first prove that L,
satisfies the comparatively simple subconditions L2 and
L3 of L-condition.

Proposition 1 i

A non-singular component S is not annihilated by a
single application of L,.

Proof

Let s be a point in S. Then there is another point ¢
in S, which is adjacent to s. Suppose that s*=¢*=0. In
this case it is seen that

s¢ at) and 7 ¢ a(s),

i.e., s and t are horizontally adjacent. Then the point
p such that a(p)={s, ¢} is seen to be included in S*
because

f6=f7=1

in L,. If either s* or ¢* or both is 1, on the other hand,
S* is not empty. In any case, it is seen that S* is non
empty.

Multiply connected components are obviously non-
singular. Then, from Proposition 1, L, is proved to
satisfy L2.

Proposition 2

Given a picture, possibly consisting of many com-

ponents, there exists an integer n such that at most »
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applications of L, to the picture erase all components
except for the background.
Proof

We will make a proof for the case of 0-background.
The other case (1-background) can similarly be proved
by reversing the ‘polarity’. If there is no component in
the picture, n=0. Otherwise, consider the following three
values.

a=max (j|(i, ) ¢ background),
b=min (i|(i, j) ¢ background),
c=max (i—j|(i, j) ¢ background).
The three lines
j=a,i=b,and i—j=c

surround the triangular area in which l-components
exist (Fig. 3). When L, is applied once,

a is not increased because f,=f, =0,
¢ is not increased because f,=f, =0,
b is increased at least 1 because f,=f; =0.

Then, it is seen that the surrounding triangle will collapse
to a single point by applying L, at most c+a—b times.
Then n=c+a—b+1 is seen.

Proposition 2 shows that L, satisfies L3.

Regarding L1, all of the following subconditions must
be examined.

1) If S is a non-singular component, S* is a
connected component.

2) If S, and S, are different components, S¥ and S¥
are disjoint and not adjacent (including the cases that one
or both of S; and S, is singular).

3) If C and D are non-singular 1- and O-component,
respectively, and if C is adjacent to D, C* is adjacent to
D*.

We omit the details of the proof that L, satisfies L1
because of its combinatorial nature, only showing the
series of lemmas for the proof. It is worthwhile, however,
to note that the proofs are by no means trivial because

i-j = ¢ j = a

\

Fig. 3 Surrounding triangle.
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operation L, is not monotonous, i.e., 1-setting of 0-
points as well as 0-setting of 1-points occur.
Lemma 1

Given a component C, let xyz be a path which satisfies
the conditions,

xeC*, yeC,ze C¥C* and
if xe C* and y e C~ then y € a(x).

Then there exists a path of the form xw,- - -w;z (n=0, 1,
or 2) such that

w; € C*, and
ifw, e C* and ze C~ then z e a(w,).

(Only the case y € C~ is non-trivial.)
Lemma 2

Given a non-singular component C, C* is a connected
component.

(Paths in C which connect points of C* can be micro-
converted into those in C* using Lemma 1.)
Lemma 3

If S, and S, are non-singular, different components,
S% and S% are non-adjacent, disjoint components.

(The contradiction S, = S, will be derived if this lemma
is supposed not to hold.)
Lemma 4

Adjacency of a non-singular 1-component C and a
non-singular O-component D is preserved between C*
and D*. (We use the fact proved in [4] that either C or D
surrounds the other component. The proof of this lemma
is made using an extremal point of surrounded
component.)

From Lemma 1 to 4, we can show the correctness of
the following proposition.
Proposition 3

S. Kawar
L, satisfies the subcondition L1 of L-condition.
5. Conclusion

With conditions N1 to N4 and Propositions 1 to 3, we
can complete the proof of the following theorem.
Theorem

Operation L, defined by the majority function of 3-
argument is the one and only one parallel operation on
the hexagonal lattice, which satisfies L-condition.
Remarks

The hexagonal lattice has the property that the connec-
tivity is defined simply and uniquely. On the square
lattice, on the other hand, we usually have to handle
two types of connectivity separately for 0- and 1-
components. That is one reason why the combinatorial
proofs on the square lattice is more complicated than on
the hexagonal lattice. Since L-operation was first defined
on the square lattice, our next objective will be to
attack L-operation on a square lattice. The majority
function will also play an important role in this case.
The 4-argumentness, however, will present other kind
of problems in the proof.
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