Verification of an Environment Management
based on Operational Semantics for Static Scope Rules

MasaYUKI TAKEDA* and TAKUYA KATAYAMA*

This paper offers a different and simple approach to prove an environment management, i.¢., a runtime system,
for an ALGOL-like programming language with static scope rules. We formalize the static scope rules by starting
with the concept of trace and define the central notion of environment, which represents all accessible data at a
certain moment, in a more abstract way. Although correctness proofs of ALGOL-like runtime systems are a
known subject, we arrive at a transparent correctness proof, which is easier to follow than the articles dealing
with this subject, completely neglecting unnecessary technical details.

1. Introduction

This paper offers a different and simple approach to
prove an environment management, i.e., a runtime
system, for an ALGOL-like programming language with
static scope rules. In general, correctness proofs of
ALGOL-like runtime systems are a known subject, e.g.,
Jones & Lucas [2], McGowan [6], and Kandzia [5]. The
proof of correctness in Jones & Lucas, for example, is
based on the twin machine which combines two
abstract machines, that is, the defining machine and the
stack machine which define the language part and its
implementation respectively. This paper, however, aims
at a transparent proof completely neglecting unnecessary
technical details. To this end, we develop the static scope
rules by starting with the concept of trace and define the
central notion of environment in a more abstract way.

Section 2 presents informal static scope semantics and
introduces some restrictions of a language for the
conciseness of discussions. In Sec. 3, we describe a pro-
gram execution by giving a series of procedure activations
and returns (called trace), and define the environment of
a trace according to the static scope rules. Section 4
introduces the chain method which uses two chains
(static link and dynamic link) for an environment
management. In order to verify the correctness of the
chain method, we show the correspondence between the
environment defined in Sec. 3 and the one in this method
(Theorem 2).

2. Static Scope Rules

In programming languages, there are two methods
of communication between a called procedure and its
caller; (1) global variable (with static/dynamic binding),
(2) parameter passing (call by reference, by name, by
value, by result, etc. [3]). We are concerned here with

*Department of Computer Science, Tokyo Institute of Tech-
nology.

Journal of Information Processing, Vol. 5, No. 2, 1982

methods of global variable communication, since the
central notion of an environment depends on it. The
scope of a name can be classified into two large groups,
that is to say, static and dynamic. In this paper, we
consider the static scope rules which are widely used in
ALGOL-like programming languages, such as ALGOL
60, PASCAL, or PL/I.

Static scope rules reflect the static nesting relations into
their dynamic activations, and define the following;
(1) all data which are accessible at a certain moment, and
(2) legal procedure calls. An informal static scope
semantics is described as follows in which some param-
eter restrictions are assumed for the conciseness of
discussions.

[Parameter Restrictions]

We assume that parameters are absent or parameter
passing has been performed except procedure param-
eters. The number of procedure parameters must be at
most one, and the procedure which is able to call or
refer to a formal procedure X is limited to the procedure
which declares X as its formal parameter, that is, global
formal procedures are not allowed.

[Static Scope Rules}

(R1) An environment of a procedure activation is a set
of all variable locations which are accessible in this pro-
cedure and is defined as follows. Let data segment of a
procedure be a set of its local variable locations. (a) If
the activated procedure is a formal procedure and
corresponding actual (not formal) procedure is P, then
its environment is composed of its data segment occur-
rence and the most recently generated environment of
the procedure activation, which declares P as its local
procedure, at the time when P is transmitted for the
first time. (b) If the activated procedure is not a formal
one, then its environment is composed of its data
segment occurrence and the most recently generated
environment of the procedure activation which declares
it at the time when it is called.

(R2) The procedure P may call or refer to the formal

76

procedure X only if there exists the actual parameter
corresponding to X under the parameter restrictions. We
assume that this rule R2 holds only in the case where the
formal procedure X is eventually called.

(R3) An execution of a program begins with its main
procedure, and a procedure Q (which is not a formal
one) may be called and Q may be transmitted as a
parameter within an activation of a procedure P only if
all data segments of the ancestors of Q on the procedure
declaration is contained in the environment of the
activation of P.

Note that rule R1 shows the environment of a
procedure activation and gives static scope to local
variables. Rule R2 restricts an activation of a formal
procedure and defines legal procedure parameter
passing. Rule R3 defines an activation of a procedure
(not formal one) and its transmission as a parameter,
and gives static scope rules to procedure identifiers.

3. Formalization of Static Scope Rules

3.1 Description of Program Executions

In this section, we formalize the static scope rules
shown above with the concept of trace as used in
Hoare [1].

Definition 1. Procedure Declaration Tree T

Let PNAME be a finite set of procedure names, and
FNAME be a finite set of formal procedure parameter
names. Throughout this paper, these procedure names
appear in upper case letters. A tree T is a procedure
declaration tree if it consists of node P or P{X) for some
Pe PNAME, X e FNAME. We assume that procedure
named P and formal procedure named X in T are all
different.

Example 1. .
proc P @)
(proe Q(X) &S o
i [proc R
[[[proc S ©

(a) procedure declaration (b) procedure declaration tree

Definition 2. Legal Procedure Call Set CALL

(1) Let T be a procedure declaration tree. We take
Path(P) to be a path from the root node of T to the
node whose procedure name is P, and describe it by a

Fig. 1 Path and extension in a procedure declaration tree.

M. Takepa and T. KATAYAMA

finite series of each procedure names.

(2) If His a path in T, then extension ext(H) is a
set of procedure names whose distance from H are not
more than one (See Fig. 1) [4]. It is formally defined as
follows.

ext(H)
={P e PNAME|distance(H, P)<1}
={Pe PNAME|Pe H v (3Q € H A branch(Q, P) e T)}

(3) If P, Qe PNAME and procedure call from P
to Q is represented by P—Q, then

CALL={P—Q|P,Q € PNAME A Q € ext(Path(P))} v
{—P|P e PNAME A P is the root node of T}

is called the legal procedure call set on T. Note that — P
represents the first procedure call in a program, that is,
main procedure call.

Definition 3. Trace, Program, Reduce Function

(1) We take D, xD,x---xD, to be the set of
elements of the form {x,, x,,* - -, x,> where x; e D; (1<
i<n), and if x={x,, ‘-, x,> then x|i denotes x; (1<
i<n).

We describe procedure activations and returns as
follows. Let ACT=(PNAME v FNAME) x (PNAME ©
FNAME v {null}), then p € ACT denotes the activation
of the procedure whose name is p|l and its actual
parameter name is p]2. Note that p|2=null means the
activation without a parameter.

Let RTN={p|pe ACT}, then p denotes the return
from the activation p.

(2) Let TR=(ACT u RTN)*, then we define a
trace e€ TR as a series of procedure activations and
returns. Therefore, it is possible to describe a program
execution by giving its trace, and each program is
associated with a set of possible traces which are the
possible series in the execution of its program. Let
TRACE € 2™ be a set of such traces, then a program is
defined by the following quadruplet:

program=(PNAME, FNAME, T, TRACE).

This association provides a foundation of a formal
definitions of the language [1].

(3) Reduce Function r

For any domain 7R, a partial function r: TR—TR is
defined by

1) e,e;eTR, pe ACT

=>r(e, ppe;)=r(ese;)

2) e€ ACT*=r(e)=e.)

This function reduces the legal pair of procedure activa-
tion and return in a trace. A trace e € TR is reducible if
r(e) e ACT*.

()

T=@®» ©®
®

Example 2.

PNAME={P, Q, R, S}, FNAME={X},

Verification of an Envir t Management based on Operational Semantics for Static Scope Rules 77

If an activation of a procedure is represented by its
lower case letter, then the following trace is reducible.

e=prssSrrqx
s
re)=prqx
)
where if an actual parameter exists in an activation, it is
shown in the parenthesis; e.g., pl|2=null, p|2=S.

Definition 4. Parameter Matching Function March

(1) If a procedure P is passed as a parameter, then
the procedure which transmits P for the first time is called
the base procedure of P.

Example 3.
e=pqry ()
) (X)} padameter
' ' correspondence @) G (5

The procedure P in this trace is the base procedure of
S and X, and the actual procedure name (¢ PNAME)
corresponding to the formal procedure X and Yis S.

(2) To make a formal parameter correspond with
an actual parameter, we define new domain SEG for
each activation in a reduced trace as follows.

SEG=PNAMExDxN,

where PNAME part shows the activated procedure
name. D is a set of data segments (see static scope rule
R1) and represents its data segment occurrence. N is
a non-negative integer and this part points to the pre-
vious procedure activation which way fram the environ-
ment in a reduced trace and it is called the access link.

(3) Parameter matching function Match: ACT*—
SEG* is defined by

Match(e)=¢, and

for any pe ACT*, g€ ACT,

Match(pq) = Match(pym(p, q}1),

where m: ACT*x(PNAME v FNAME)-SEG is a
partial function defined as follows.
If pe ACT*, Q € (PNAME U FNAME) then

m(p, Q)=
Q € PNAME=Q, dseg(Q), Ipl>, (ERY)
Q € FNAME A last(p)|2 e (PNAME U FNAME) A
Q is the formal parameter of last(Match(p))|1
=m(p/last(p), last(p)|2), (32
elase=1. 3.3
In this definition, we introduce the following notations:
e : concatenation,
dseg(Q): data segment of the procedure Q,
Ip{: length of series p,
/: right quotient,
last(p): last (right most) element of p,

1: undefined value.

For each procedure activation in a reduced trace, the
function m creates a SEG value which is composed of
its procedure name (€ PNAME), data segment occur-
rence, and access link (3. 1). In case of a formal procedure
activation (3.2), corresponding actual parameter
(last(p)|2) is applied to m, and resulting access link
points to its base procedure activation. If a procedure is
activated directly, its access link points to its calling
procedure activation. If there is no actual parameter or
illegal parameter accessing exists (3. 3), then m returns
1 as its value.

Example 4.
For the trace shown in Example 2, parameter matching
can be performed as follows.

Match(r(e))=p'r' q' s’
(0)(1X(2)(2)) illustration of access link
it |}

where p’ shows the SEG value whose first element
(procedure name) is represented by its upper case letter
P, and the number with an arrow below it illustrates its
access link.

In the following, we define the conditions of a trace
which ensure the legal procedure activation according
to the static scope rules described in Sec. 2.

Definition 5. Feasible Trace

A trace e € TR is feasible if the following conditions
hold.

(1) e is reducible.

(2) For any prefix e, of e such that r(e,) #¢,

Juyu,- - -u, € SEG*[Match(r(e,))=uu,- - -u, A
ViR<jsn=3ili=u)l3 A 1<i<j—1 A
(ul1-u;l1)e CALL]] A (—»u,l1)e CALL).
Condition (1) ensures the legal pair of procedure activa-
tion and return in a trace. Condition (2) shows that the
procedure call from #;]1 to u;|1, which have the follow-
ing relation by an access link, is legal,

Match(r(e)))=- - -u;+ - -uy- - -
}
and this condition represents the static scope rule R3.
The rule R2 is represented by the parameter matching
function Match (Def. 4-(3)).

access link,

Lemma 1.
A trace which is a prefix of some feasible trace is also
Seasible.

3.2 Environment of Trace

In this section, we define the environment of a trace
according to the static scope rules, and investigate the
condition of the trace whose environment is well-defined

(Theorem 1).

In order to pick up the procedure activations which are

78

chained by access links, we introduce the function Pos
which returns the set of these procedure positions in a
reduced trace.

Definition 6. Pos: SEG*—2"

For any u € SEG*,

Ju]=0=>¢: empty set,

else ={|u|]} U Pos(first(u, last(u)}3))

where first(n, n) gives the series which consists of first #
elements of u.

Pos(u)= [

Example 5.

Letu= 4] u; [u3) ug [us]
OMOMMA A
= =

then Pos(u)={5} U Pos(u,u,u;)
={5} u {3} U Pos(u,)
={5} u {3} U {1} U Pos(e)
={1, 3, 5}

The environment of a trace e is defined by both Path(P)
and Match(r(e)) where P is the most recently activated
procedure without the corresponding return in a trace.
Path(P) is used for giving a static nesting relation of a
procedure declaration with respect to a trace e. The
following function Select selects the SEG values, whose

data segment parts form the environment of a trace e,
from Match(r(e)).

Definition 7. Select: PNAME* x SEG*— SEG*
Let H=PP,---P, (P,e PNAME,1<i<t)
u=uu,---u, (u,€SEG,1<i<n,u,ll=P,),
then
Select(H, n)=v,v,---v(v; e SEG, 1<i<t)
where,
v,=u,;
for any 1<i<¢—1
3k € Pos(u)[v;=u, A v;|1=P; A
Vj € Pos(Wlk <j<v;4,13=u;{1#£P]].
Definition 8. Environment of trace e: env(e)

For any trace e € TR, the partial function env: TR—
D* is defined by

env(e)=Select(Path(P), Match(r(e)))|2,

where P=last (Match(r(e)))|1 € PNAME, and the op-
erator | operates on all elements of the series. If |r(e)| =
0 then env(e)=e.

Example 6. The environment of the trace shown in
Example 2 is the following.

Match(r(e))= ﬁ'Ir"Eq’Js’

M. TAKEDA and T. KATAYAMA

env(e)= Select(Path(S), p'r'q's")|2
= Select(PRS, p'r'q’s"')|2
=(p'r's’)]2.
The following theorem shows that the property of
feasibility ensures not only the legal procedure activation

but also the well-definedness of the environment of a
trace.

Theorem 1.
If e is a feasible trace then env(e) is well-defined.
Proof. By induction on |r(e)].

1. The result obviously holds for |r(e)| =0, and 1.

2. Assume the result holds for |r(e)| <n.

For the case of |r(e)]=n+ 1, if e is a feasible trace then

Match(r(e))=u,u,- - -u,,, € SEG*
is well-defined, and let Q=u,,,}|1 then by Definition
5~(2)
Jifi=u,+113 A 1<i<n A P-Qe CALL}
where P=u,}1.
3 L e
1
Match(r(e)y=- - ‘u;- - -u, 44

Since there exists the prefix trace e, of e such that
Match(r(e,))=uu,- - -u; (by Lemma 1),
then
env(e,)=Select(Path(P), Match(r(e,)))|2

is well-defined by induction hypothesis.
Furthermore, since P-»Q € CALL,

3H,[Path(Q)=(Path(P)/H,)Q],
and
env(e)=(Select(Path(P), Match(r(e,)))|2/p)ou,,]2
=(env(e,)/p)outy+112,

where p is some suffix of env(e,).
Therefore env(e) is well-defined.

Beginning with the next section, we present some
properties with respect to the environment env(e). The
proofs are omitted for want of space.

Lemma 2.

For any activation p € ACT, and trace e,, e, € TR such
that e, ppe, is feasible, then env(e, ppe,)=env(e,e,).

Lemma 2 shows that the legal pair of activation and

Verification of an Environment Management based on Operational Semantics for Static Scope Rules 79

return in a feasible trace do not affect its environment.

Lemma 3.

For any trace e € TR, and formal procedure activation
qe ACT, q|1 € FNAME, if e, is the prefix of the feasible
trace eq such that

Match(r(eq))=u, - - !‘, Uy, U,|3=1, and

Match(r(e,))=u,- - -u,
then
env(eq)=env(e,p),

where pe ACT is the activation of the procedure
u,|1 € PNAME.

Lemma 3 shows that the activation of a formal
procedure restores the environment in which the cor-
responding actual procedure (¢ PNAME) is transmitted
for the first time. Obviously, Lemma 3 holds for
qll e PNAME.

Lemma 4,
If e € TR is the feasible trace such that

Match(r(e))=u,- - -u;- - -u,, u,}3=i

He)=p,--pi** Pu Pall € FNAME,

then p,|1 is the base procedure of the formal procedure
p.ll and the corresponding actual procedure name
(€ PNAME) is u,|1.

4. Verification of an Environment Management

The method of an environment management with two
chains (static and dynamic links), what is called chain
method or display method, is widely used in ALGOL-
like language processors [7]. Although correctness
proofs of such runtime systems are a known subject [2],
we can show a transparent correctness proof, which is
easier to follow than the articles dealing with this subject,
avoiding technical details.

In Sec. 4.1, we present the chain method under the
parameter restrictions shown in Sec. 2, and define the
environment envg(e) of the chain method in Sec. 4.2. We
then prove the equivalence of two environments, that is
env(e) and env_(e), in Sec. 4.3.

4.1 Chain Method

A stack, which keeps the values of local variables of

a procedure and other control informations for an

environment management, is composed of the follow-

ing elements:

1. static link---set of pointers which indicate the
origin addresses of the accessible stack elements and
keep the order of its static nesting in a program,

2. dynamic link- - - pointer which keeps the order of the
dynamic generation of a stack element,

3. level- - -static nesting level of a procedure,
4. parameter information- - -it is composed of an actual

parameter name and a pointer to the origin address
of its base procedure stack element,
S. data segment- - -set of local variables of a procedure.
These structures are shown in a PASCAL-like
programming language as follows.

const maxlev=maximum proc nesting level;
type stack =stack of rec;

rec=record
disp : array [1..maxlev] of frec;
rin : frec;

level : 1..maxlev;
para : para info,
dseg : data segment
end;
para info=record
name: proc name {€ PNAME};
base : frec
end;
data segment=set of local variable;
var S: stack;
A: Trec {pointer to current stack element }

The following functions are prepared for the manage-
ment of the stack S.

push(S, P)—pushes the new stack element for the
procedure P e PNAME into stack S and returns the
resulting stack as its value.

pop(S)—pops the top element from stack S and returns
the remainder stack.

Definition 9. Initial state and state transitions
(1) Initial state.
S=¢: empty stack;
A=nil
(2) Activation of a procedure P with an actual
parameter Q, where Pe PNAME v FNAME, Qe
PNAME o FNAME © {null}.
We indicate the consequent states by giving
apostrophes.

P (P e PNAME),
B (P e FNAME);

Note that P, is an actual procedure name € PNAME
of P.

A1l.para.name

S’ = push(S, P,);
A'1.dseg=dseg(P,);
A'l.rint=A41;
A't.devel=level(P,);

where level(P) gives the static nesting level of a procedure
Pe PNAME.

80

A't.displi]t =
A1 displilt (1<i<A't.level A Pe PNAME),
A1.para.baset.displ[ilt
(1<i<A'f.level A Pe FNAME),
At (i=A'1.level),
1 (A'1.level <i <maxlev);
Al.para.name (Q e FNAME),
A't.para.name =(Q (Qe PNAME),
1 (Q = null);
At.para.baset (Q e FNAME),
A't.para.baset=(At (Q e PNAME),
1 (Q = null)
(3 Return.
A't=At.rtnt;
S'=pop(S)
Example 7.

For the procedure declaration tree shown in Example
2, the stack of the trace e=prqx is illustrated in Fig. 2.
)

4.2 Environment on Chain Method

Before defining the environment of the chain method,
we represent a stack of a trace by the following function.

Definition 10. Stack of trace e: stack(e)
A stack of a trace e € TR is defined as
stack(e)= At
={At.disp[1]1, - - -, A1.disp[maxlev]t,
At.rint, At.level, At.para, Al.dseg),

where A4 points to the current stack element based on e.

Lemma 5.
For any activation pe ACT, and trace e, e, € TR

STATIC DYNAMIC
LINK LINK
(DISP) (LEVEL) (PARA} (RTN)
e S S [_—T7
DSEG(P)
t I 2 I/I
L
DSEG(R)
[/
| 2 l S -’f’
L=
DSEG(Q)
i T 1 —1
= DSEG(S)

Fig. 2 Linkage of stack elements (e=p r(g) x).

M. TAKeDA and T. KATAYAMA

such that e ppe, is feasible, then stack(e,ppe,)=stack
(es€2).

Definition 11. Environment
The environment env,(e) of a trace e on chain method
is defined by
A1.disp[1]1].dsege
env, (€)=
A1.disp[A1.1level)t .dseg,
where AT =stack(e).
The next lemma corresponds to Lemma 2.

Lemma 6.
For any activation pe ACT, and trace e,, e, € TR
such that e, ppe, is feasible, then env (e, ppe,)=env (e e,).
We present some properties of a stack with respect to
an activation of a formal procedure.

Lemma 7.

For any trace e € TR and formal procedure activation
qe ACT, qll e FANME, if eq is feasible and A=
stack(eq) then the stack element of the base procedure of
qll is A1. rinl. para. basel, and the corresponding actual
procedure name (€ PNAME) is A1. rtnl. para. name.

Lemma 8.

For any trace e € TR and formal procedure activation
g€ ACT, ql1 € FNAME, if e, is the prefix of the feasible
trace eq such that

Match(r(eq))=u,-- -u; - -u,, u,}3=1i, and

Match(r(e,))=u,- - -u;,
then
stack(eq).rtnl. para.basel =stack(e,).

Lemma 8 shows the relation between the access link
of a formal procedure activation and the para.base link
of its calling procedure on chain method.

The next lemma corresponds to Lemma 3.

Lemma 9.

For any trace e € TR and formal procedure activation
q€ ACT, ql1 e FNAME, if e, is the prefix of the feasible
trace eq such that

Match(r(eq))=u;- - -u;- - -u,, u,|3=i, and
LI

Match(r(e))=u, - - -u,,
then
env,(eq)=env,(e,p),
where p € ACT is the activation of the procedure u,]1 €
PNAME.
4.3 Correctuess Proof of Chain Method
Theorem 2 given below shows the correspondence of

Verification of an Environment Management based on Operational Semantics for Static Scope Rules 81

ENVIRONMENT ON ENVIRONMENT ON

FORMAL SEMANTICS CHAIN METHOD
+.
| |
LEMMA 1 i LEMMA 5
LEMMA 3 ' LEmma 7
| LEMMA 2| LEMMA 4———— G LEMMA 8 LemMA 6
| LeMma 9 J
i |
THEOREM 2

Fig. 3 Correctness proof of chain method.

two environments, that is, env(e) and env,(e), and proves
the correctness of the chain method. Figure 3 shows the
dependency relation of each lemma used in this theorem.
Theorem 2. For any feasible trace e € TR,
env,(e)=env(e).

Proof. By induction on |e|.

1. (le|=0)
env (e)=c¢=env(e) (since A=nil).
2. (lel=1)

If p € ACT is a feasible trace then its procedure name
pllisin PNAME and
env,(p)=At1.dseg where A1 =stack(p)
=dseg(P) where P=p|1
=env(p).

3. Assume the result holds for |e| <k.
3-1. For the case of e where g € RTN, |e|=k, if
e is a feasible trace then

dp e ACT, 3e,, e, € TRleG=e,ppe, A |leje,|=k—1].

Therefore
env,(eq)=env.(e, ppe,)
=env,(e,e;) (Lemma 6)
=env(e,e,) (hypothesis)
=env(e,ppe;) (Lemma 2)
=env(eq).

3-2. For the case of eq where g € ACT, |e|=k.
3-2-1. If e=eyp (ep€ TR, pe RTN) then in a
similar way of 3-1 env (eq)=env(eq).
3-2-2. Lete=eyp (eo € TR, p € ACT).
a) If gl1 € PNAME then
env,(eq)= [A’1.disp[1]1.dsege
A’T.disp[}iT.level]T .dseg
where A’ =stack(eq)
= (A’.disp[1]].dsego
At.disp[M — 111 dseg>
dseg(Q)
where A1 =stack(e), Q=ql1, M=level(Q).

If eq is a feasible trace and Match(r(eq)) =u, " * *Up_ U, €
SEG*, thenu,|3=n— 1 by Definition 4-(3), and (#,-,}1—

u,}1) € CALL by Definition 5~(2). That is, if P=u,_,|1
and L=/level(P) then P—Q is a legal procedure call and
M—-1<L.

Therefore, there exists some suffix p € D* of env,(e)
and

env,(eq)=(env,(e)/p)-Q
=(env(e)/p)-Q (hypothesis)
=env(eq).

b) If eq is a feasible trace, g}l e FNAME, and
Match(r(eq))=u," - -u, € SEG*, then by Definition 5(2)

ili=u,l3 A 1<i<n—1 A (ul1-u,ll)e CALL].
Let e, be the prefix of eq such that
Match(r(e,))=u, - - -u,,
then by Lemma 9

env,(eq)=envy(e, p,),

where p, is the activation of the procedure u,}1.
Since |e; p,| <k,

env (e, p,)=env(e,p,) (hypothesis)
=env(eq) (Lemma 3).

Therefore
env (eq)=env(eq).]

5. Conclusion

We develop the static scope rules by starting with the
concept of trace and define the central notion of environ-
ment, which represents all accessible data at a certain
moment, in a more abstract way. Although correctness
proofs of ALGOL-like runtime systems are a known
subject, we arrive at a transparent correctness proof,
which is easier to follow than the articles dealing with
this subject, completely neglecting unnecessary technical
details.

In this paper, we consider the procedure entry & static
scope rules which is used in PASCAL. This method is,
however, applicable to block entry & static scope rules
used in ALGOL60 or PL/I by regarding a trace as a
series of block activations and returns.

We assume parameter restrictions for the conciseness
of discussions. This restrictions may be removed if (1)
list representation is used for procedure parameters and
(2) an environment consists of both data segments and
parameter passing informations. Detailed discussions
for this extension will be the subject of a future paper.

Acknowledgement.

We wish to thank Professor Hajime Enomoto for his
valuable advice, and Naoki Yonezaki and Toshio
Miyachi for carefully reading earlier drafts of this paper.

References
1. Hoarg, C. A. R. Some Properties of Predicate Transformers,

82

JACM, 28, No. 3, 461-480 (July 1978).

2. Jongs, C. B., Lucas, P. Proving Correctness of Implementation
Techniques, Symp. on Semantics of Algorithmic Languages (E.
Engeler, ed), Lecture Notes in Mathematics 188, 178-211, Springer
(1971).

3. Jongs, N. D., Muchnick, S. S. TEMPO: A Unified Treatment
of Binding Time and Parameter Passing Concepts in Programming
Languages, Lecture Notes in Computer Science, No. 66, Springer-
Verlag, Berlin (1978).

4. KATAYAMA, T., TAKEDA, M. Correctness Proof for an Im-

M. TAKeDA and T. KATAYAMA

plementation of the Scope Rule, Proc. IECE symp. on Automata

and Language AL 79-23, 31-37 (1979).

§. KANDzIA, P. On the Most Recent Property of ALGOL-like

Programs, Lecture Notes in Computer Science 14, 97-111, Springer

(1974).

6. McGowan, C. L. The ‘most recent’ Error: Its Causes and

Correction, SIGPLAN Notices 7, No. 1, 191-202, (1972).

7. WIRTH, N. The Design of a PASCAL Compiler, Software-

Practice and Experience, 1, No. 4, 309-333 (October 1971).
(Received May 7, 1981: Revised October 26, 1981)

