A Structural Approach to Pointer Data Types

TAIICHI YUASA*

Programs with pointers tend to be difficult to understand and error-prone. At the same time, verification of
such programs is often quite complex. Thus it is desirable to restrict the use of pointers while maintaining effi-
ciencies provided by pointer manipulation. To this end, a concept is introduced for tree structures with the mech-
anism of direct access to subtrees. It is proposed to embed this structuring concept into programming languages
as an abstract data type basic to the languages. Examples are given, which suggests that this approach provides
a clean view of pointer operations and eases verification of programs while reasonably maintaining efficiency of

pointer manipulations.

1. Imtroduction

It has been recognized that use of pointers tends to
increase difficulties of programs understanding, speci-
fications, and especially verification, thus is error-prone.
It is not easy to localize the effect of pointer operations.
The simplest view is that a pointer operation affects the
state which is determined by the contents of all cells
accessible to the program. Program verification me-
thods based on this view are inevitably accompanied
by high complexities and are not applicable to actual
programs though several strategies have been proposed
to ease the difficulty [1, 2, 5]. Secondly it is often very
difficult to give specifications to programs manipulating
pointers. For instance, it is difficult to define explicitly
what a ‘linear list’ is, which would be necessary to prove
the simplest ‘linear search’ program.

These difficulties result from the arbitrary use of
pointers. Therefore it is desirable to restrict the use of
pointers while maintaining their merits of flexibility. For
this purpose, we regard pointer data structures as
objects of abstract data types. That is, we put a certain
restriction on pointer data structures and introduce
operations so that they preserve the restriction. With
this approach, the effect of an operation is limited to the
data objects which appear explicitly in the program text.
Also the structure of data objects is characterized by the
structural induction on the data types.

For most applications, data structures can be
represented by some kinds of trees (including lists).
Obviously there are two exceptions: cyclic structures and
data sharing. Cyclic structures cause no problem as we
will see later in this paper. As for data sharing, there
are two cases: essential and inessential.

Fig. 1 illustrates a data structure which occurs fre-
quently in pointer applications. Although the data object
A is shared by two pointers P1 and P2, A can be regarded
as a component of a larger data object B and the pointer

*Research Institute for Mathematical Sciences, Kyoto Univer-
sity.

Journal of Information Processing, Vol. 5, No. 2, 1982

Fig. 1 Inessential sharing.

P2 is considered to point to a substructure of B. By
denoting explicitly that modification through the pointer
P2 affects B and information retrieved through P2 is
contained in B, the ability to understand and verifiy
programs will be increased. We call this kind of data
sharing ‘inessential’. Without this kind of sharing, i.e.,
without the mechanism to directly locate substructures,
operations on trees would be quite inefficient. On the
other hand, in case of ‘essential’ sharing in Fig. 2, the
shared data object A is possibly a component of two
(or more) data objects; thus it would be difficult in this
case to locate the effect of pointer operations. Although
the importance of essential sharing in system programm-
ing is not small, a fairly large portion of pointer
manipulations can be covered by the inessential kind.

For the above reasons, we limit data sharing to the
inessential kind. Here, the use of pointers falls into three
classes:

Class 1. Those which constitute data structures such
as Pl in Fig. 1. (Those pointers are accessed from other
pointers, whereas those in the classes below are not.)

Class 2. Those which represent data objects such as

70

Fig. 2 Essential sharing.

P3 (e.g. the root pointer to a tree structure).

Class 3. Those which point to a location within a
data structure such as P2. (They are used to access
directly a portion of a data structure.)

In this paper, we introduce trees, as an abstract data
type which has the facility of inessential sharing. There,
the use of pointers in the first class are embedded in the
language mechanism to build data structures, and those
in the second to bind tree objects with variables. The
third kind of pointers are regarded as another data type
specially introduced to identify subtrees.

2. T-trees

In general, a tree may be EMPTY (an empty tree);
or else a tree X is a tuple consisting of trees (called direct
subtrees of X), and of a node which contains a value of
a certain type called node type. A tree X is called a
‘subtree’ of a tree Y if either X is identical to Y or X is
a subtree of one of the direct subtrees of non-EMPTY
Y. In order to identify a subtree of a tree, we introduce
the notion of T-trees (short for tagged trees). A T-tree
is a tree, each subtree of which is attached with a tag
unique to the subtree (see Fig. 3). Thus each subtree of a
T-tree is also a T-tree.

.................

Eig. 3 A (binary) T-tree.

T. Yuasa

Each tag is an element of the data type TAG. TAG
contains infinitely many elements to identify non-empty
T-trees, as well as a distinguished element NIL to
identify the empty T-tree.

(Remark: It is possible to realize cyclic structures with
T-trees. For this purpose, we adopt as the node type a
record type with as many fields of type TAG as the
number of direct subtrees. When the TAG element in a
TAG field is not NIL, we interpret that the direct subtree
corresponding to the TAG field is actually the subtree
identified by the tag. For example, in Fig. 4, ‘tag 3’ in
the second TAG field of the T-tree with ‘tag 4’ means that
its second direct subtree is actually the T-tree with
‘tag 3°.)

In the following, we introduce operations by which
T-trees are accessed through their identifying tags. As
mentioned before, we need to denote explicitly what is
affected by these operations and where the information
is retrieved from by them. Let us call a T-tree X a
supertree of Y when Y is a subtree of X and, in case X
is not a subtree of any other T-tree, let us call X the root
tree of Y. Since we have excluded the essential sharing,
operations on a T-tree affect only its supertrees. In other
words, the modification is bounded to the scope of the
root tree. In order to make it possible to denote the root
tree in program text, we require that there is a one-to-
one correspondence between root trees and variables of
type T-tree. The requirement is justified for the follow-
ing reasons: Since a subtree is identified by a tag, we
would rather define a variable of type TAG to hold
subtrees. Besides, if two variables X and Y of type T-tree
were bound to a single T-tree, then the effect of modifica-
tion through X would be invisible for an operation to
retrieve information through Y.

3. Operations on Trees

In the sequel, we introduce functions and procedures
available to the programmer. These operations are basic
in the sense that they are provided by the language system
and are the only operations by which the programmer

Fig. 4 Cyclic structures possible

A Structural Approach to Pointer Data Types

can access data structures directly. They constitute a
complete set of operations. That is, the programmer
can construct any T-tree and retrieve any information
stored in T-trees. For simplicity, we limit our discussion
to the type B-TREE of T-trees with exactly two direct
subtrees and with the node type integer. (In Fig. 3 was
an object of B-TREE.)

GET1: B-TREE—-B-TREE
GET2: B-TREE—-B-TREE
GETN: B-TREE-—integer

HEAD: B-TREE-TAG
These are functions to retrieve information from B-trees.
GETI1 and GET2 (collectively denoted as GETi) return
the first and second direct subtrees, respectively.
GETN(X) returns the node of X and HEAD(X) the tag
attached to X.

TAGGET: (B-TREE, TAG)-B-TREE

This function corresponds to the dereferencing operation
in conventional languages. That is, TAGGET(X, T)
returns the subtree of X with the tag 7.

Assignment to tree variables should be forbidden for
the following reasons. In most languages, by executing
an assignment statement ‘X:=E’, either a copy of E is
generated to which X is bound, or X is bound to the
object E itself. In the latter case, obviously our require-
ment is not satisfied. In the former case, on the other
hand, the requirement would be met, but copying is
just not what we want. Thus trees are modified through
basic procedures by sending them as variable parameters.
In the following procedure declarations, the types to the
left of vertical bar ‘|’ are those for variable parameters,
and the types to the right for value parameters.

SETEMPTY: (B-TREE))

SETNEW: (B-TREE]|integer)
By SETEMPTY(X]|), the B-TREE variable X is set
empty. By SETNEW(X|I), X is bound to a new tree
with the node I and with direct subtrees empty. The
new tree is attached with a tag not yet used.

TAGSETN: (B-TREE|TAG, integer)

TAGSETN(X|T, I) replaces the node of the subtree of
X attached with T by L.

We need operations to replace a B-tree by another
B-tree in order to modify tree structures. For efficiency
purpose, we want to have operations accomplished
by simple pointer replacement rather than time-con-
suming copying. At the same time, we must avoid data
sharing between two B-tree objects. As a compromise,
when operations below replace a B-tree by a subtree 4
of Y, Ain Y is as well replaced by the empty B-tree.

MOVE: (B-TREE, B-TREE})
MOVE-i: (B-TREE, B-TREE|TAG)
MOVE;-: (B-TREE, B-TREE|TAG)
MOVEi-j: (B-TREE, B-TREE|TAG, TAG)

By MOVE(X, Y]), the variable X is bound to the B-
tree to which Y was bound and, at the same time, Y is
set empty. By MOVE-i(X, Y|TY), X is bound to the
i-th direct subtree 4 of the Y’s subtree to which the tag
TY is attached, and A is replaced by EMPTY. MOVEi-

!

(X, Y|TX) replaces the i-th direct subtree of the X’s
subtree with 7X by the B-tree in Y and sets Y empty. By
MOVEi-j(X, Y|TX, TY), the i-th direct subtree of the
X’s subtree with TX is replaced by the j-th direct subtrees
A of the Y’s subtree with TY and A4 is replaced
by EMPTY.

In order to avoid data sharing between two B-tree
objects, another restriction is necessary. Parameter
passing to operations must be forbidden which may
cause data sharing during the execution of the
operations. For example, given a function F receiving
two T-tree parameters X and Y, the call F(Z, GET2(Z))
would cause the second direct subtree of Z to be shared
by X and Y during the execution of F.

In Fig. 5, a sample program to construct binary trees
is presented. The procedure ADD receives a variable
parameter X of B-TREE which is supposed to be a
binary search tree, and a value parameter I of Integer.
If I is not found in X, then X is expanded to contain 1.
We will come back to this program later for verification,
when formal definitions of binary search trees etc. will be
given.

4. Specifying B-trees and Operations on them

In the following, the language : [8] (or its approgima-
tion) is used to present data types and operations on
them formally. This choice of language is not essential
and any language which provides clear and rigorous data
type definitions with abstraction mechanisms may sub-
stitute 1.

interface type TAG

function
NIL : - @
FIRST: - @
NEXT: @ » @

end interface

In the interface part, operations on TAG are introduced
with their domain and range. ‘@’ presents the data type

procedure ADD (X:B-TREE | I:integer)
var T,T1:TAG; DONE:boolean; J:integer; Y:B-TREE;
T:=HEAD(X);
if T=NIL then SETNEW(X|I)
else
DONE:=false;
while “DONE do
J:=GETN(TAGGET(X,T));
if J=I then DONE:=true
else
if I<J then T1:=HEAD(GET1(TAGGET(X,T)));
if T1=NIL then SETNEW(Y|I);
MOVE1-(X,Y|T);
DONE:=true
else T:=T1
end if
else T1:=HEAD(GET2(TAGGET(X,T)));
if T1=NIL then SETNEW(Y|I);
MOVE2-(X,Y|T);

DONE:=true
else T:=T1
end if
end if
end if
end while
end if

end procedure

Fig. 5 A sample program.

72

being defined, i.e. TAG in this case. FIRST is supposed
to be automatically attached to the new tree when the
operation SETNEW is called for the first time during
program execution. Then each time SETNEW is called,
a tag not yet used is generated by calling NEXT.

Now we present the abstract data type B-TREE and
operations on it. Some of the operations are not in-
troduced in the previous section. This means that
these operations are not executable in the user program
and are used only for specification purposes. (Indeed
some of the operations below would cause data sharing
among two data objects of B-TREE, if they appeared in
the program text. For example, by SET1(X|Y), the B-
tree bound to Y would be shared with X.) In the follow-
ing, explanations are given for only such non-executable
operations.

interface type B-TREE

function

EMPTY: + @

NEW: (integer, TAG) + €

GETZ: @ -~ @

GETN: € + integer
procedure

SETZ: (éle)

SETN: (@|integer)
function

HEAD: @ + TAG
end interface

In the interface part of B-TREE, primitive operations on
B-TREE are introduced. Other operations on B-TREE
are supposed to be composed in terms of these primitive
operations.

EMPTY is a constant function whose value is the
empty tree. NEW(/, T) creates a new B-tree with a node 7
and with EMPTY subtrees. T is the tag attached to the
new B-tree. SETi(X]Y) replaces the i-th direct subtree
of X by Y. There are two additional function and
procedure (GETN and SETN) to get or set the node of
a B-tree.

specification type TAG
var T,S:8;
axiom
1.NEXT(NIL)=NIL
2.NEXT(T)=NEXT(S) > T=S
3.NEXT(T)=FIRST
end specification

specification type B-TREE
var X,Y:8; I:integer; T:TAG;
domain
NEW(I,T) on T=NIL
GETZ (X) on XzEMPTY
GETN(X) on X*EMPTY
SET{(X|Y) on SET{-DOM(X,Y)
SETN(X|I) on X=zEMPTY
axiom
.TzNIL > HEAD(NEW(I,T))
.T=NIL > GETZ (NEW(I,T))
.T#NIL = GETN(NEW(I,T)) I
XZEMPTY A SET:-DOM(X,Y) > HEAD(SET;(X|Y)) = HEAD(X)
.XZEMPTY A SET;j-DOM(X,Y)
> GETZ (SETj (X]Y)) = Y (case {z5)
= GET; (X) (case {%;)
SETZ -DOM(X,Y) > GETN(SETi(&IY))

EMPTY

M EWN =

6 .XZEMPTY A = GETN(X)
7.X*EMPTY A SETZ-DOM(X,Y) > HEAD(SET{(X|Y)) = HEAD(X)
8 . X2EMPTY > GETZ (SETN(X|I)) = GETi (X)

9.X#EMPTY > GETN(SETN(X{I)) = I

10.X*EMPTY > HEAD(SETN(X|I)) = HEAD(X)

11.X=EMPTY = HEAD(X)=NIL

end specification

T. Yuasa

The specification part consists of axioms in a many-
sorted first-order logic (Free variables in the axioms are
assumed to be universally quantified.) and domain
specifications for some of the operations. (For the other
operations, their domain specifications are assumed to
be true.) Calls to an operation is valid if the arguments
satisfy the condition in the domain specification for the
operation. Otherwise, execution ends with abnormal
condition. (Note: In the specification part, procedures
are regarded as functions whose return values are
those of the variable parameters. Thus HEAD
(SETi(X|Y)) in axiom 4 is the tag of the B-tree to which
X is bound after SETi(X|Y) is executed.)

In order to ensure that a subtree is uniquely identified
by a pair of a B-tree and a tag, the domains for SET1
and SET?2 are restricted so that, when, say, SET1(X|Y)
is executed for a non-empty B-tree X, a tag attached to
a subtree of Y is identical neither to the tag of X nor
any tag to a subtree of the X’s second direct subtree.

Here, SETi-DOM(Y, Y) is short for

X=EMPTY A ~CONT(Y,HEAD(X)) A DISJOINT(GETj(X),Y),

where i #j. DISJOINT(X, Y) is short for

VT.~(CONT(X,T) A CONT(Y,T))

CONT is a predicate which determines whether a B-tree
contains a subtree with the given TAG element. Fomally,
CONT is defined as

CONT(X,T) =

if X=EMPTY v T=NIL then false
else (HEAD(X)=T v CONT(GET1(X),T) v CONT(GET2(X),T))

Indeed, with the restrictions given in the domain
specifications on SETj, the uniqueness of tags is guaran-
teed as asserted in the following lemma.
Lemma
For any X of type B-TREE,
UNIQUETAG(X)
holds, where UNIQUETAG is recursively defined as:

UNIQUETAG(X) = if X=EMPTY then true
else ~CONT(GET1(X), HEAD(X))
A ~CONT(GET2(X), HEAD(X))
A DISJOINT(GET1(X), GET2(X))
A UNIQUETAG(GET1(X))
A UNIQUETAG(GET2(X))

This lemma is proved by the generator induction rule
(See [8]) on B-TREE, that is,

T=NIL VY. (SETZ-DOM(X,Y) XzEMPTY
> P(NEW(I,T)) > P(SETZ(X]Y))) > P(SETN(X|I))

P(X)

The lemma above is essential to prove properties of tag
operations. If the same tag were possibly attached to
more than one subtrees of a tree, then some properties
we expect to hold would no longer be valid. For instance,

CONT(GET2(X),T) > TAGGET(GET2(X),T)=TAGGET(X,T)

would not hold.
Now we introduce supplementary operations on B-

A Structural Approach to Pointer Data Types

TREE.

interface procedure TAGGET
function TAGGET:(B-TREE,TAG) + B-TREE
end interface

specification procedure TAGGET
var X:B-TREE; T:TAG;
domain
TAGGET(X,T) on T=NIL v CONT(X,T)
axiom
1. TAGGET(X,NIL) = EMPTY
2. TAGGET(X,HEAD(X)) = X
3. XZEMPTY A T=NIL A HEAD(X)=T A CONT(GETZ(X),T)
> TAGGET(X,T) = TAGGET(GETZ(X),T)
end specification

interface procedure TAGSET
procedure
TAGSETZ : (B-TREE | TAG, B-TREE)
TAGSETN: (B-TREE | TAG, B-TREE)
end interface

specification procedure TAGSET
var X,Y:B-TREE; T,T1:TAG; I:integer;
domain
TAGSETZ (X|T,Y) on TAGSETZ-DOM(X,T,Y)
TAGSETN(X|T,I) on CONT(X,T)
axiom
1. T=NIL A HEAD(X)=T A TAGSET:~DOM(X,T,Y)
> TAGSETZ (X|T,Y) = SETL(X|Y)
2. CONT(GETJ (X),T) A DISJOINT(GETZ (TAGGET(X,T)),Y)
A TAGSETZ (X,T,Y)
> TAGSETZ (X|T,Y) = SETJ (X|TAGSETZ (GET7 (X)|T,Y))
3. T=NIL A HEAD(X)=T > TAGSETN(X{T,Y) = SETN(X|Y)
4., CONT(GETj (X),T)
> TAGSETN(X|T,I) = SETJ (X|TAGSETN(GETj (X)|T,I))
end specification

(where TAGSETi-DOM(X, T, Y) is short for

CONT(X,T)
A VT1.(CONT(Y,T1)
> ~CONT(X,T1)
v (CONT(X,T1) a CONT(GETZ(TAGGET(X,T)),T1)))

TAGSET 1 and TAGSET 2 are non-executable pro-
cedures which replace the first subtree and the second
subtree, respectively, of the subtree with a given tag.

Finally, we present MOVE operations. Notice the
difference between SETNEW introduced here and that
in the previous section. In a formal point of view,
SETNEW must receive an additional parameter of type

interface procedure MOVEOPERATIONS
procedure

MOVE: (B-TREE,B-TREE|)
MOVE-17: (B-TREE,B-TREE| TAG)
MOVEZ -: (B-TREE,B-TREE|TAG)

MOVEi-j: (B-TREE,B-TREE|TAG,TAG)

SETEMPTY: (B-TREE])

SETNEW: (B~-TREE|TAG,integer)
end interface

specification procedure MOVEOPERATIONS

var X,Y:B-TREE; T,TX,TY:TAG; I:integer;

domain

MOVE-1 (X,Y|TY) on CONT(Y,TY)
MOVEZ-(X,Y|TX) on CONT(X,TX)
MOVEi-g (X,Y|TX,TY) on CONT(X,TX) A CONT(Y,TY)
axiom
1. MOVE$1(X,Y|)=Y

. MOVE$2(X,Y|)=EMPTY
. CONT(X,TX) > MOVE{-$1(X,Y|TX)=TAGSETZ(X|TX,Y)
. CONT(X,TX) > MOVEZ-$2(X,Y|TX)=EMPTY
. CONT(Y,TY) > MOVE-i$1(X,Y|TY)=GETZ(TAGGET(Y,TY))
. CONT(Y,TY) > MOVE-i$2(X,Y|TY)=TAGSETZ(Y|TY,EMPTY)
. CONT(X,TX) A CONT(Y,TY)

> MOVEZ-7$1(X,Y|TX,TY)

= TAGSETZ (X|TX,GETJ (TAGGET(Y,TY)))
8. CONT(X,TX) A CONT(Y,TY)
> MOVEZ-7$2(X,Y|TX,TY) = TAGSETj(Y|TY,EMPTY)
9. SETEMPTY(X)=EMPTY
10. SETNEW(X|T,I)=NEW(T,I)

end specification

~NownEWwn

73

TAG to be attached to a new tree. In execution, on the
other hand, SETNEW is assumed to be supplied with a
new tag element automatically.

(Since MOVE operations receive two variable param-
eters, the value of X after an execution of MOVE(X, Y)
is denoted as MOVESI(X, Y)), etc.)

S. An Example of Proving a Program with Trees

Having formally presented the data type B-TREE and
operations on it, now we prove the correctness of the
procedure ADD in Fig. 5. Here, we attempt to prove the
following properties of ADD:

property 1. SORTED(X) > SORTED(ADD(X|I))
property 2. SORTED(X) > INCLUDE(ADD(X|I),I)
property 3. SORTED(X) a INCLUDE(X,J) > INCLUDE(ADD(X|I),J)

where SORTED is a predicate to determine whether or
not a given B-tree is a binary search tree.
SORTED(X)
=if X=EMPTY then TRUE
else (GET1(X)=EMPTY > GETN(GET1(X))<GETN(X))
A (GET2(X)=zEMPTY > GETN(X)<GETN(GET2(X)))

A SORTED(GET1(X))
A SORTED(GET2(X))

INCLUDE is a predicate to be defined as

INCLUDE(X,I)
=if X=EMPTY then FALSE
else GETN(X)=I v INCLUDE(GET1(X),I)
v INCLUDE(GET2(X),I)

That is, INCLUDEC(X, /) holds if and only if the B-
tree X has a subtree whose node is equal to I.

We first attach inductive assertions to the while state-
ment. For the property 2, for instance,

CONT(X,T) » (DONE > INCLUDE(X,I))

is sufficient. Then the so-called verification conditions
are generated in the well-known manner. Since these
verification conditions can be proved straightforwardly,
here, we simply provide the key formula

CONT(X,T) A INCLUDE(TAGGET(X,T),I) > INCLUDE(X,I)

which may be used several times for proving the verifica-
tion conditions. This formula is proved using the follow-
ing structural induction on B-TREE:

P(EMPTY) XzEMPTY a P(GET1(X)) A P(GET2(X)) > P(X)

P(X)

6. Implementation

We discuss briefly how to implement B-trees efficiently.
We have required that a subtree is identified by a pair of
its root tree and the tag attached to the subtree. Thus a
function call, say, TAGGET(X, T) is valid only if the
B-tree to which the tag T is attached is a subtree of X.
Since tags are implemented by pointers, as far as
implementation is concerned, a subtree can be identified

74

only by the tag attached to the subtree. Thus we would
rather avoid runtime tests for such a condition, since
these tests include time-consuming tree traverse. The
best solution to this problem would be to design a
language processor which generates object programs in
two modes depending on the user request. In one mode,
redundant tests are detected and only necessary tests
are inserted into object programs. For example, in the
sample program in Fig. 5, the test for the expression
TAGGET(X, T) will make it unnecessary to test for the
statement MOVE1-(X, Y|T) immediately after the ex-
pression. In the other mode, no tests are inserted at all.
(A similar method is often found for boundary check of
array indexing.)

7. Generalization

The discussion so far made on B-trees can be extented
to general cases. First of all, the choice of integers as the
node type is not essential and can be replaced with any
type. Adopting type-parameterization mechanisms to
the language, it is even possible to define trees of
arbitrary node type [6, 8]. Various kinds of trees with
different arities (not necessarily binary) may be necessary
in actual programming. Furthermore, a single tree may
contain nodes with different types or subtrees of different
arities. Note that it is also straightforward to design a

T. Yuasa

language construct which allows the user to define data
types of such non-uniform trees by extending the notion
of T-trees as discussed in this paper.

Acknowledgement

The author wishes to express his appreciation to
Professor Reiji Nakajima for patiently supervising this
research.

References

1. BEerrY, D. M., BrLICH, Z. and LUCENA, C. J. Pointers and data
abstractions in high-level languages. Computer Languages 2 (1977),
135-148.

2. BursTaLL, R. M. Some techniques for proving correctness of
programs which alter data structures. Machine Intelligence 7 (1972),
23-50.

3. Hoarg, C. A. R. Recursive data structures. Stanford AIM-223
(1973).

4. Hoarg, C. A. R. and WRTH, N. An axiomatic definition of the
programming language PASCAL. Acta Informatica 2 (1973).

5. LAVENTHAL, M. S. Verification of programs operating on
structured data. MIT MAC TR-124 (1974).

6. Liskov, B. et al. Abstraction mechanisms in CLU. Comm.
ACM. 8 (1977), 567-576.

7. LuckaaMm, D. and Suzuki, N. Verification-oriented proof
rules for arrays, records, and pointers. Automatic Program Veri-
fication V, Stanford AIM-278 (1976).

8. NaxkanMma, R., HONDA, M. and NAKAHARA, H. Hierarchical
program specification and verification—a many-sorted logical
approach—Acta Informatica (1980).

(Received January 23, 1981: revised August 17~ 1981)

