Guidance System for Structuring or Restructuring of a
Database in Multiple Database Management Systems

Yukuo IsoMmoto*, TAKAKO MATSUDA** and NOBUYUKI TANAKA**

In a scientific information system, scientists who are usually non-professional database administrators have
been collecting and editing a number of items of scientific information in ordinary file systems or handy storage-
oriented DBMSs. As masses of the information materials are stored, they organize and integrate the separated
ones into another large-scale database managed by an online information retrieval-oriented DBMS. Then, the
scientists often have to manipulate an unfamiliar DBMS by themselves, though they are untrained. This paper
addresses an experimental attempt of a guidance system with which even a non-professional database adminis-
trator can accomplish his database structuring on a DBMS unfamiliar to him.

This system is implemented as a command system named ‘DBGUIDE’, which provides two functions as
follows: (1) the semi-automatic database conversion from COOD (a handy storage-oriented DBMS) into INQ
(a general-purpose DBMS), and (2) database structuring guidance for administrators who are unfamiliar with
INQ. This guidance system not only plays an important role in the management of a complicated database system
in an environment where multiple databases and multiple DBMSs exist, but also shows one of the methods to

familialize untrained database administrators like scientists with a DBMS.

1. Introduction

For the organization of scientific information,
scientists have been integrating their specialized informa-
tion into a scientific information system. Each participant
in the system performs individually his database structur-
ing in his own field with the use of the most suitable
DBMS for his objects.

At an early stage in the database management,
scientists who are non-professional and untrained
database administrators (DBAs) collect and store the
information into their private databases':>'> with the
use of a personal handy manipulative DBMS (or an
ordinary file system). After collecting masses of the
information, it is necessary to merge their databases
with a high-performance DBMS for a public on-
line information service!**. In this case, they have to
migrate their databases from a DBMS into another one.

This paper is concerned about the guidance system
for database structuring or restructuring in such a
situation. From the viewpoints of human factors, the
system is implemented as a command system named
‘DBGUIDE’ in a TSS mode. DBGUIDE supports
database structuring on a DBMS ‘INQ’® which is
suitable to an information retrieval-oriented, large-scale
database. When a DBA has a database on a DBMS
‘COOD’®'"), it can be semi-automatically converted
from COOD to INQ.

*(Osaka University Computation Center, Osaka University,
Mihoga-oka, 5-1, Ibaragi, Osaka, 567, JAPAN.
**Computer Center, Tohoku University, Katahira 2-1-1, Sendai,
980, JAPAN.

Journal of Information Processing, Vol. 5, No. 3, 1982

Recent advancement of computer technologies enables
us to discuss such heterogeneous database systems with
multiple DBMSs like federated or distributed database
systems®:%-1% in association with computer networks.
Owing to such complicated situations, unfortunately,
untrained DBAs like scientists can not perform their
database structuring without assistance, though their
participation is important in the formation of a sci-
entific information system. Therefore, the guidance
system improves the situation by assisting their database
structuring in a conversational mode. Since this paper
concentrates its subject on the guidance for database
structuring, hardware and software architecture of a
DBMS is beyond the scope of this paper.

2. Command System

In order to realize intelligible man-machine inter-
actions between a DBA and a DBMS, it is very important
to improve its human factors aspect!!). Especially for the
widespread dissemination of a DBMS to nontechnically
trained individuals, we concentrate our discussion on
the improvement of man-machine interactions between
an untrained DBA and a DBMS. In this paper, man-
machine interactions are improved by standardization
of the procedure of database structuring.

For the standardization of database structuring, its
job is divided into five steps: (1) the definition of an
internal schema, (2) the definition of a conceptual
schema, (3) the definition of an external schema, (4)
conversion of source data, and (5) data storage to a
target database. DBGUIDE executes these job steps in
this order (see Fig. 1), but rejects illegal job sequences to
avoid erroneous operations. Another aim of DBGUIDE

Guidance System for Structuring or Restructuring of a Database in Multiple Database Management Systems 183

step(1) step(2)

Definition of Definition of
Internal schema Conceptual schema

e

mq
Database step(3)
File -
Definition of
it External schema
NN
#
step(5) -np(}

DOEA | | DRE8
Storage Conversion

Fig. 1 Job sequence for structuring of an INQ database.
DBGUIDE manages a database structuring according to
this diagram which shows job sequence, data flows, and
definitions. The arrows show
==); job sequence,

——; data flows,
—--+; definitions of a database structure.

is an automatic database conversion from COOD to
INQ. When source data are stored in a COOD database,
a conceptual schema of COOD namely DDL is auto-
matically translated into a target one of INQ namely
FDL. At the same time, a data conversion program from
COOD to INQ is also automatically generated in the
consistent manner with the conceptual schema
translation.

A DBA has access to DBGUIDE by a command
‘DBGUIDE’ on a TSS terminal (see Fig. 2). Following
the welcome message, DBGUIDE requires a macro-
name of a DBA’s reserved file area, a database name,
an FDL name with its sequential number, and a DBA’s

SYSTEM TRBGULDE

BEXXRXXERXRLLXRALREIRTARY
% NELCOME TO DBS GUIDE #
EEIREERERINLRLLRIEIRRSRR
UMC OF DATABASE T
=TRACISFILE

DATABASE NAME 7
=TESTDB

(D A macro name of the reserved file area.

@ A database name.

FDL NAHE AND ITS NUMBER ?
=TESTFDL 01 @ A YDL neme and its nusber.

USERIDSPASSWORD FOR THE DATABASE ADMINISTRATOR 7
=50008204054880RNE082RES) An sdministrator’s number
— and pasevord.

THE DATABASE TRACISFILE/TESTDB NEW OR OLD T

=0LD @ Ao identification of the old version
- to ba structured.

=== LIST OF THE JOB STEPS ===
€1) INTERNAL SCHEMA (4) DATA CONVERSION PROGRAM

(5) DATA STORAGE

(4) JOB HISTORY

(2) CONCEPTUAL SCHEMA
(3) EXTERNAL SCHEMA

THE NUMBER OF JOB STEP ?
=E4 Selection of editing mode of WNo. 4.

GENERATION OF DATA CONVERSION PROGRAM.

ORIGINAL DATa FILE 7
»C00D @ A vame of source data.
CATA/FILE OF COOD DATABASE 7
=4000810003/EMDDL

A name of a source data file.
TABLE NAME ?

=TEX % A table name of a COOD database.
cbor anaLYs1s 1s dk.

THE NUMBER OF RECORD SETS 7

*1000 The maximun number of stored records.

%£3 A DATA CONVERSION PROGRAM HAS BEEN GENERATED £%%

Fig. 2 An example of man-machine interaction on DBGUIDE.
User’s commands are typed in along the sequence as @,
®,: -+, ®. In this figure, underlined strings are user’s
commands. Following the welcome message, DBGUIDE
identifies a database by user’s commands @-@®. After the
identification, a user (an administrator) selects one of the
six job steps. In this figure, DBGUIDE generates auto-
matically a data conversion program by the command E4
at ®. After finishing the job steps, the man-machine in-
teraction comes back to step ®.

number with a password in order to identify a database
under structuring. Responding to the command NEW
at the command input ® in Fig. 2, a database is defined
as new, and its relative files are prepared for the database
structuring hereafter (see Table 1). On the other hand,
the command OLD identifies old file which has already
been defined partially. When he restarts the database
structuring of old file from the other day, he has to type
the command OLD at the command input ®.

After listing the standardized job steps, a DBA types
one of them with its mode, which is an editing (‘E’),
run (‘R’), or display mode (‘D’). In this example, a DBA
selects an editing mode of No. 4, namely ‘DATA
CONVERSION PROGRAM'’. The first character ‘E’
specifies the editing mode. If ‘R’ is typed instead of ‘E’,
the job deck will be executed on a host computer. If ‘D’
is typed, its corresponding job deck is displayed on a
TSS terminal.

Herein, source data are assumed to be stored in
a COOD database, and then a data conversion program
is automatically generated on the file ‘CONVPROG’
(see Table 1). A COOD database is identified at the com-
mand inputs @-®. After finishing a job step, the man-
machine interactions come back to the command input
®. If he pushes only a carriage return key at the stage ®,
the guidance is finished. The other job steps are also
executed in a similar way.

A DBA may want to make a job schedule. DBGUIDE
provides an optional function that enables a DBA to
make a flexible job schedule by typing serially some of
the job steps on the same line at the command input ®.
On the one hand, if he wants to execute only one job
step at a time, he only has to type the one.

3. Modules for Database Structuring Guidance

In order to support even conversational database
access, it is necessary to separate the database mani-
pulation from the other aspects of the language proces-
sor!?. In a similar way, we separate the database
structuring from the other aspects of the job execution
on a host computer.

Table 1 Contents of files for DBGUIDE. The files in this table
are created and initialized in the beginning of a database
structuring. The contents are edited or generated by the
modules of DBGUIDE.

Files Contents

Names for database identification.
History of job execution.

JOBHISTORY

INTERNAL A job deck for the definition of an internal
schema.

CONCEPTUAL A job deck for the definition of a conceptual
schema.

EXTERNAL A job deck for the definition of an external
schema.

CONVPROG A job deck for data conversion.

STORAGE A job deck for data loading of mass data.

184

Table 2 Modules of the guidance system DBGUIDE.

Modules Functions
Supervisory Guides and controls the database structuring
module
INITIAL Creates and initializes the files for database
structuring. JCLs are created by this module.
INTERNAL Defines an internal schema.

CONCEPTUAL Defines a conceptual schema. For COOD,
there is an option to translate automatically a
DDL of COOD into an FDL of INQ.

EXTERNAL Defines an external schema.

CONVERSN Edit a data conversion program. For COOD,
there is an option to automatically generate a
data conversion FORTRAN program from
COOD to INQ.

STORAGE Automatically generates a job deck for the

utility of data loading of mass data.

Taking account of the job sequence in Fig. 1,
DBGUIDE consists of seven modules (see Table 2), each
of which assists a DBA to edit and execute semi-
automatically the job decks of his database structuring.
The file JOBHISTORY stores their common informa-
tion; a database name, an FDL name, a DBA’s number
with his password, and a job history. Referring to
JOBHISTORY, each specialized module performs its
work consistently with the others. In this section, let us
view the individual modules of DBGUIDE.

3.1 Supervisory Module

At the beginning of the database structuring, the
supervisory module identifies a target database through
the command inputs @®—® in Fig. 2. Following the
identification, the module controls a job sequence by
referring to JOBHISTORY. For an editing mode, the
module calls a corresponding specialized module (see
Table 2), but an illegal command or an incorrect job
sequence is rejected to avoid erroneous operations.

3.2 Initialization: INITIAL

Responding just to the command NEW in the beginn-
ing, the module INITIAL creates automatically the six
files listed in Table 1 in preparation for the structuring
of a new database. Following the file creation, the

module generates JCL sets of individual job decks on the
corresponding files.

3.3 Description of Schema: INTERNAL,
CONCEPTUAL, and EXTERNAL

The structure of a database is generally described in
three phases: an internal, a conceptual, and an external
schema. A conceptual schema of INQ consists of
independent logical structures called ‘FDLs’. An internal
schema must be defined for each FDL®.

Given a physical size of a file for an FDL, the module
INTERNAL generates a job deck for the definition of an
internal schema. All the other parameters like a read/
write permission are substituted for dummy values,
which can be updated after finishing the database struc-

Y. Isomoto, T. MATSUDA and N. TANAKA

turing.

The module CONCEPTUAL assists an administrator
to edit the logical structure of an FDL. Each line of an
FDL is grammatically checked immediately after its
input on a TSS terminal. Furthermore, CONCEPTUAL
provides another optional mode which translates a DDL
of COOD into an FDL of INQ in a certain standardized
rule discussed in Sec. 4.

The module EXTERNAL generates a job deck for
the definition of an external schema that is defined in a
hierarchical connection of FDLs. In DBGUIDE, a DBA
only has to type names of connected FDLs and their
connection type, and then an external schema is semi-
automatically generated according to a DBA’s
command.

3.4 Data Storage: STORAGE

INQ provides a utility program LOADER which
loads a database with mass data and generates simulta-
niously inverted files for keyword retrieval. Then the
module STORAGE generates automatically a job deck
for LOADER according to a description of an FDL.
Even though the automatic generation is available only
for INQ, it may be one of the most helpful functions for
untrained DBAs.

3.5 Data Conversion Program: CONVERSN

Before loading a database with mass data, a DBA has
to convert the format of source data into the one
demanded by LOADER. By analyzing an FDL, the
module CONVERSN generates part of a FORTRAN
data conversion program in which source data are
ignored. Especially for a COOD database, CONVERSN
provides an optional mode that completes a data con-
version program from COOD to INQ. These algorithms
will be discussed in Sec. 5.

3.6 Summary

After finishing the database structuring, a database
user is able to have immediate access to the database
through an end user language of INQ.

4. Automatic Schema Translation

When a DBA has a source database in a DBMS
like COOD, he will need an automatic translation
of its logical schema into a target one for his data-
base restructuring. In order to implement an un-
derstandable guidance system for restructuring of a
database, the module CONCEPTUAL supports an
automatic schema translation from COOD into INQ
in association with changing its database management
strategy: COOD, which is a flat model, is suitable for
personal handy manipulative databases. INQ, which is
a hierarchical model, is suitable for large scale informa-
tion retrieval oriented databases.

Surveying both the data description languages of
COOD and INQ, the translation rules are formalized

Guidance System for Structuring or Restructuring of a Database in Multiple Database Management Systems 185

Table 3 Translation rules from COOD to INQ. This table realizes
a unique automatic translation of a schema from a
COOD database into an INQ one.

COOD INQ
Integer In CPb; 4-byte binary
) Real Fm.n, Em.n FB; 4-byte floating number
Dm.n, Jm FBD; 8-byte floating number
Character Am, Rm X(m)
item data item data item
array name repeating group

opLY
DATABASE EM ! EDUCATION MOVIE DATA FILE}
TABLE INDEX ¢ TABLE OF INDEX#

DIVAG (2) (A30) : DIVISION OF THE GENERATION}
RMARK (5) (A70) 1 REMARKS} '
AESTR (10) (A70) : ABSTRACT3

L _KEYWD (20) (AS0> : KEYWORD(S)}) A

FDL TESTFDL,O01.

SEGND (I14) UNIGQUE : SEQENCE NUMBER;

TITLE {AS0) ! TITLE}

STITL __ (AS0) 3 SUB TITLE;
MABLE YEXTS 3 TABLE OF YEXTET ~— =
1 SEGND (16) UNIQUE : SEQUENCE NUMBER}]
I TITLE (AS0) 3 TITLE} H
{ STITL (ASO) i SUB TITLE}]
) CODEN (A&) : CODE NUMBER$ H
1 YEAR (I4) : YEAR} 1

PRDSR (A30) ! PRODUCER; [
: SBJCT (A30) i SUBJECT}

'
1
I 1

END-DDLF
I Translacion
CREATE
DATABASE TESTDB .
PASSWORD ISOMOTO YUKUO.
02 SEGNO PIC CP6.
02 TITLE PIC X(50).
02 STITL PIC X(50).
02 CODEN PIC X(&).
PIC CP&.
PIC X(30).
PIC X(30).

02 YEAR

02 PRDSK

02 SBJCT

02 GDIVAG (N),
03 DIVAG PIC X(30).

02 GRMARK (N).
03 RMARK PIC X(70).

02 GABSTR (M),
03 ABSTR

02 GKEYWD (N),
03 KEYWD

PIC X(70).

PIC X(50).
END

Fig. 3 An example of automatic translation of a conceptual
schema from COOD into INQ. The DDL of COOD was
automatically translated into the FDL of INQ by the
module CONCEPTUAL. In this figure, JCLs are omitted.

in Table 3. As the logical structure of INQ is much more
flexible (hierarchical) than the one of COOD (fiat), a
COOD database can be translated uniquely into an
INQ one in accordance with the rules in Table 3. Because
of the flat structure of COOD, these rules are much
simpler than the ones in Refs. 13 and 14.

Fig. 3 shows an example of the automatic translation.
A DDL of COOD is composed of tables whose logical
structures are described with data names and array
names. The array names are translated into repeating
groups of an FDL notified by the string ‘(N)’. Since
several FDLs can be connected into a single external
schema, the translation will be able to realize various
access paths by devising external schemas of INQ®.

5. Analysis of a Schema and Generation of a Data
Conversion Program

Generally speaking, database restructuring involves
data conversion from a source database into a target

one in addition to the schema translation. This section
defines notation and show an algorithm for generating
a data conversion program from COOD to INQ. For
coding a data conversion program as automatically as
possible, DBGUIDE analyzes both conceptual schemas
of a target INQ database and a source COOD one.
Owing to the flat structure of COOD, the data con-
version is simpler than the discussions in Refs. 15 and 16.
The module CONVERSN analyzes an FDL according
to the following three characteristics: The logical struc-
ture of an FDL is hierarchical such as a file description
of COBOL. The level number of a repeating group (a
member record in ANSI terminology) must be one larger
than its higher one (an owner record in ANSI
terminology'™). Due to the flat structure of COOD, a
DDL can be analyzed in the same method as an FDL.
For the formal analysis of an FDL (or a DDL), the
notation for an i-th item D; is defined as follows;

Di={Li’ Ni’Ai}s l=17 2; 3,] 17
é;=L,;_,— L, for a repeating group item D;, (5.1)

=0 for else,

L;: alevel number of D,,

N;: an item name of D,

A;. an attribute of D; (a data item, a repeating
group, a data length, a data type, et al.),

6;: the difference between level numbers of D;_,
and D;, D; is a repeating group item and D,_,
is a data item.

A line number i is serially counted from the top (i=1)
to the bottom (i=I). CONVERSN determines D; and §,
as reading sequentially lines of an FDL from the top to
the bottom.

For a simple expression of the generating process of a

data conversion program, a set G, of data items in a k-th
repeating group is expressed as follows:

G ={N limia<i<ima:}, (5.2)

where D, is a k-th repeating group item, and D;,,,
is a (k+1)-th repeating group item. The number k is
called a record set number that numbers serially in-
dividual repeating groups.

Moreover, we introduce an operator [] which
converts an integer n or a data item name N, into a
character string: For example, if n is an integer 123,
[123] is a character string ‘123°. [N;] is the character
string corresponding to a data item name N,.

The notations are used to formulate the generation of
a job deck of a data loading and a data conversion
program. Fig. 4 shows an example of an FDL and its
related parameters. According to this formulation, the
parameter J; predicates the hierarchical structure of an
FDL: When 6,=0, G(D; € G,) is a member record of
an owner G,_,. When é;=1, G, is on the same level as
Gy_1. Moreover, when §,=2, G, is on the (5;,—1) level
above G, _,.

186

Ay LI

PIC X(4). Gl
PIC X(4),
(N).

PIC FB.
PIC CP6.

.
PIC X(10).

(N).
PIC X(10).

.
PIC FB.

(OB
PIC X(50).

m.
PIC CP6.

.
PIC FB. 3

m.
PIC X(4).
e

.
PIC FB.

Fig. 4 An example of an FDL and its associative parameters.
The parameters are defined in Eqgs. (5.1) and (5.2).

Fig. 5 shows a flow diagram for the automatic genera-
tion of a FORTRAN data conversion program, in which
data transference from a source database is left incom-
plete to be coded later. For a source COOD database,
comment statements in the diagram are exchanged for
data manipulation languages of COOD (DMLs).

Fig. 6 shows a data conversion program corresponding
to the shema translation in Fig. 3. The program was
generated through man-machine interactions in Fig. 2.
This program has six DMLs of COOD,. USE, OPEN,
.FIND, .IF, .GET, and .CLOSE, which are later trans-
lated into ordinary FORTRAN statements by the
COOD precompiler. The pair combination of .FIND
and .GET transfers a data set to a program working area
at one time. Array names such as DIVAG, RMARK,
ABSTR, and KEYWD are written in DO loops. IREC

tart

nd inicialization /
=L A=T]

Data ¢t

Y. IsoMoT0, T. MATSUDA and N. TANAKA

corresponds to a record set number (K=[k] in Fig. 5)
of a repeating group.

00010085, N

000208 JOB 6000820‘05‘”‘“ B
000308 LIMITS 25:026000

000408 LOWLDAD

000308 OPTION FORTRANsRELMEM
000608 FORTRAN LSTIN»NLNOysNFORM

00070CCC FORTRAN PROGRAN FOR DATA CONVERSION CCC
OOOSDCCC CONNECT COOD BCHEMA TO INQ SCHEMA CCC
O 0 +USE EM/TEXTS(ALL-ITENS)#
+OPEN TEXTS}H
Mlldtttl UNIQUE ITEMS %¥x

0120 7001 I101=1, 1200
00130 +FIND TEXTSH
00140 +IF END(TEXTS)+G0 TO 80O
00150 .BET SEDNDvT[TLE-EYI‘ILvCODEN.VEARrPRBSR:SBJCT,nIst,RHaRKrABSTRuKE
00160 1Yl
00170 IF(SEDND EQG.000000) GO TO 8000
00!50
90 URITE(OG) IRECSEQNO, TITLE,STITL,COBEN, YEAR»PRDSRySRJICT
002006333 GROUV DNAME IS GDIVQB XX
210 7002 102=1,
00220 xr(anAB(zoz) EQ. ‘) 60 TO 7102
00230 IREC=02
00240 WRITE(08) IREC:DIVAG(IO2)
00250 7002 CONTINUE

00260

7102 CONTINUE

00270Cxx¥ GROUP DNAME IS GRMARK Xxx

00280 DO 7003 103=1, 5

00290 IF (RMARK(103).EQ. " ‘) 60 TC 7103
00300 IREC=03

00310 WRITE(OB) IREC,RMARK(I03)

00320 7003 CONTINUE
00330 7103 CONTINUE
00340Cxxx GROUP DNAME IS GABSTR xxx

003350 DO 7004 I04=1, 1
00360 IF(ABSTR(104).EQ. " ‘) GO TO 7104
00370 IREC=04

WRITE(08) IREC+ABSTR(I04)
00390 7004 CONTINUE
00400 7104 CONTINUE
00410CEx% GRDUP DNAME IS sx:vun 5K

00420 DO 7005 105=1,

00430 IF(KEYWD(IOS).EQ. " ‘) 60 TO 7105
00440 IREC=05

00450 WRITE(08) IREC/KEYWD(IOS)

00460 7005 CONTINUE

00470 7105 CONTINUVE

00480 7001 CONTINUE

00490 8000 .CLOSE TEXTSS

00500 STOP

00510 END

00520% LIBRARY CL

00530 EXECUTE

003408 PRMFL CLsR/RsLIB/CODD/DNE

005504 FILE 08+A18,100L

003540 LIMITS &+50Kr-4Kr56000

Fig. 6 A job deck for a data conversion program. The job deck

was automatically generated by the module CONVERSN
according to the flow diagram in Fig. 5. The program con-
verts data from a COOD database into an INQ one in con-
sistency with the translation of Fig. 3.

COMMENT

IF([Nu).BQ."
K=[A]

DO [7000 + &] I=1,[Bmax]
: INSERT YOUR CODING.
.EQ. ') GO TO [7100 +R)

Ai is 'GROUP'
item

Yes

Make a repeating group set:
{NINy & Gaf.

[7000 + 4] CONTINUE
{7100 + §] CONTINUE

[7100] CONTINUE
COMMENT: INSERT YOUR CODING
sTOP

Fig. 5 Flow diagram for the generation of a data conversion program. The notations are defined in sect. 5. The flow diagram is applied to
a case in which source data are not definite. When source data are stored in a COOD database, DBGUIDE exchanges “COMMENT:
INSERT YOUR CODING.” with the verbs of COOD as follows:

-FIND, -GET, and -IF for i=1.
+CLOSE
others are removed.

for the last one,

Guidance System for Structuring or Restructuring of a Database in Multiple Database Management Sy 187

The data conversion can be classified into three levels:

Level 1 A COOD database is automatically converted
to an INQ database in the formal procedure.

Level 2 A part of a conversion program is generated
in consideration of an FDL. In this level,
the format of source data is disregarded, and
a program is left incomplete to be coded by a
DBA.

Level 3 For a more complex data conversion, a data
conversion program is coded by a DBA. This
level is beyond the scope of this paper.

A DBA can select one of the levels corresponding to the

difference between both the source data and an INQ

database.

6. Discussion and Conclusion

Up to the present, a DBMS has been discussed almost
from a professional point of view. On the one hand,
this paper discusses the database structuring guidance for
non-professional DBAs. A guidance system like
DBGUIDE plays a very important role in familiarizing
untrained DBAs with the use of a DBMS. By standardiz-
ing the database structuring on INQ, DBGUIDE is
designed as not only a guidance system but also a learn-
ing tool for untrained DBAs. When a DBA becomes an
expert with the assistance of DBGUIDE, he will be
able to update his database by himself.

This experimental system could not only manifest an
understandable systematic guidance of the database
structuring but also implement a practical system by
separating the standardized manipulation of a DBMS
from the operations of job decks on a host computer.
DBGUIDE is just an elementary prototype for future
improved systems, it will be revised to satisfy more
general requirements in database structuring.

Acknowledgements

The authors express their sincere gratitude to all
members of the Research Project “Information Studies
on Trace Characterization” and also thank the Ministry
of Education, Science, and Culture for financial support

(Project nos. 411701, 510801, and 56104001). The authors
wish also to express their thanks to NEC for the
maintenance of DBGUIDE during its users’ service.

References

1. Data for Science and Technology, Proceedings of the seventh
International CODATA Conference, Kyoto, Japan (October
1980) 8-11.

2. TaNaka, N. et al. Computer databases and their applications
in analytical chemistry: I. Database on complexation reactions,
BUNSEKI KAGAKU, 30, 9 (1981), 5838-594.

3. TANAKA, N. et al. Preliminary study of a trace characterization
information system, Anal. Chem. Acta/CTO, 133, 4 (1981).

4. IsoMoToO, Y. et al. Protein Database for Scientific Researchers,
PROTEIN-DB, Transaction of Information Processing Society of
Japan, 21, 1 (1980), 15-22.

5. HasmiMOTO, M. et al. Database Management System; INQ
(Information Query), NEC R ch & Develop t, NEC, 58
(1980), 33-41.

6. Marsupa, T. et al. User-oriented Database Management
System COOD—Its design and database languages, 21, 5 (1980),
347-353.

7. TANAKA, N. et al. User-oriented database management system,
COOD, and its applications to on-line data storage and retrieval,
Data for Science & Technology. Pergamon (1981), 504.

8. ROTHNIE, J. B. et al. Introduction to a System for Distributed
Database (SDD-1), ACM Trans. Database Syst., 5§ 1 (March
1980), 1-17.

9. McLeop, D. and HEIMBIGNER, D. A federated architecture for
database systems, National Computer Conference (1980), 283-289.
10. SwmitH, J. M. et al. Multibase-integrating heterogeneous
distributed database systems, National Computer Conference
(1981), 487-499.

11. SHNEIDERMAN, B. Improving the Human Factors Aspect of
Database interactions, ACM Trans. Syst., 3, 4 (December 1978),
417-439,

12. KEersTEN, M. L. et al. The Architecture of the PLAIN
Database Handler, Software-Parctice and Experience, 11 (1981),
175-186.

13. NAVATHE, S. B. et al. Restructuring for Large Databases:
Three Levels of Abstraction, ACM Trans. Database Syst., 1, 1
(June 1976), 138-158.

14. Fry, J. P. et al. An assessment of the technology for data-
and program-related conversion, National Computer Conference
(1978), 887-907.

15. NAVATHE, S. B. Schema Analysis for Database Restructuring,
ACM Trans. Database Syst., 5, 2 (June 1980), 157-184.

16. Su, S. Y. W. et al. Transformation of Data Traversals and
Operations in Application Programs to Account for Semantic
Changes of Databases, ACM Trans. Database Syst., 6 2 (June
1981), 255-294.

17. JarpINg, D. A. THE ANSI/SPARC DBMS MODEL,
North-Holland Publish Company (1976).

(Revised January 5, 1982)

