Distribution Problems in Distributed Database Systems:
Integration and Query Decomposition

MAKOTO TAKIZAWA*

This paper presents the solutions to some of the distribution problems in distributed databases of a bottom-up
type. They are a language for integrating local relations into global relations, and an algorithm for decomposing
global queries into local queries and executing inter-site joins. The language which is called GSDL is an extension
of QUEL so as to express the union of relations. Our query decomposition algorithm purposes to keep directory
information as small and static as possible, because their maintenance is most important from the operational
viewpoint. To achieve this goal, the scheduling of transmission of local relations is decided dynamically not in

an off-line fashion.

1. Introduction

Distributed database systems of a bottom-up type
aim at cooperating existing database systems through
computer networks. There are two problems in de-
signing them: how to solve the heterogeneity of the
existing databases, and how to intergrate databases with
different semantics into a logical database system.
We call the former a heterogeneity problem and the
latter a distribution one [TAKIM78]. The database is
composed of several layers [TSICD78] and each layer
can be characterized by one data model and language
based on it. The databases connected by the network
have to communicate with each other through one of
their layers. Therefore, they are assumed to be black
boxes, each of which provides one schema and language
based on a data model.

There are two aspects in considering the heterogeneity
of databases. One is the data model and language
provided. It is called a syntactic aspect of the database.
The other is called a semantic aspect, which represents
the meaning of the database. Therefore, the heterogeneity
is defined as the differencies of these two aspects. The
heterogeneity problem, therefore, is how to solve the
differencies of these syntactic aspects, and the distribu-
tion one is how to overcome the differencies of these
semantic aspects.

Databases in a bottom-up distributed database system
are different with respect to both syntactic and semantic
aspects. The syntactic aspect, i.c. a data model and
language, is considered as a means of description of
and access to the semantic aspect. Hence, first, data
models and languages have to be homogenized. Then,
the semantic aspect described in terms of a common
model can be integrated into one logical data descrip-
tion. We call the former homogenization and the latter
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integration. Our approach called a four-schema structure
is based on such designing process [TAKIM 78, 79].
This is similar to five-schema approach by [ADIBM78].

The four-schema structure as shown in Fig. 1.1
consists of four schema-layers, mappings among the
layers, and network data directory. There are four
schemas, local internal (LIS), local conceptual (LCS),
global conceptual (GCS), and external (EXS) schemas.
The LIS corresponds to a schema or subschema of an
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existing DBMS, which describes data usable under
network situation. The LCS is a description of the LIS
in terms of an E-R model [CHENP76]. The GCS is an
E-R model description of data integrated from the LCSs.
At both LCS and GCS levels, QUEL [HELDG75] is
provided. The EXS is a description of data of interest
to an application in terms of a data model suited for it.
We do not discuss it, because at the GCS level the dis-
tributed databases are virtualized as one database.

The mapping of the LCSs to the GCS is integration
and its inverse mapping is a query decomposition. It is a
process where a query based on the GCS is decomposed
into a sequence of queries based on the LCSs using
information (call it distribution information) generated
in the integration. Both queries are written in QUEL.
The mapping of the LIS into the LCS is homogenization
and its inverse is a query translation. It is a process where
such decomposed queries are translated into a sequence
of DMLs executable on the database using information
(call it heterogeneity information) generated in the homo-
genization [TAKIM79, 80]. The distribution and hetero-
geneity information together are called the network
data directory. The latter exists at its corresponding
site, and the former at every site.

A reason for adopting the E-R model as a common
model is that it provides the concepts of entities and
relationships among them in a simple manner, and can
be easily related to a relational model [CODDE70]. A
major advantage of the relational model is its simplicity
of description and access to data, its semantic problems
are pointed out. The more semantics the data model
provide, the more complex the description and access
become. Therefore, we employ the E-R model as a means
of designing the distributed database because of its
describability of semantics, and the relational model as
a means of describing and accessing data because of its
simplicity. This means that the LCSs and GCS are
described really in a relational form. Such descriptions
are called relational descriptions of schemas, by which
the distributed database can be accessed, based on the
E-R model description of these schemas.

We have discussed the heterogeneity problem in
[TAKIM79, 80]. So, we would like to concentrate on the
distribution problem. The integration is presented in
Ch. 2. The query decomposition is discussed in Ch. 3-6.
Especially, in Ch. 5, our query decomposition algorithm
based on dynamic decision is proposed. In Ch. 7, the
system architecture for query decomposition is shown.

2. Integration

The integration is a process for defining GCS relations
from existing LCS relations distributed over a network.
It is also similar to the definition of views [STONM76]
in a relational model. In designing a relational database,
one universal relation is vertically decomposed into
normalized relations. Views can be defined by means of
joins as multirelational operations. But in bottom-up
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designing, relations already exist at each site. This
implies that unions are also required. Unfortunately,
relational calculus languages like QUEL do not provide
such capabilities. QUEL is extended so that the unions
can be taken in the definition of the GCS relations.

The extension consists of three kinds of statements,
drange, define, and drop. The drange is used to define
tuple variables against the LCS relations along with
their existing sites:

drange (x1," -+, Xu)(X1: 81,7 "5 Xl Sm);
where each x; for i=1,- - -, m stands for a tuple variable
ranging over an LCS relation X; at site s,.

The define is used to define a GCS relation:

define{ grelname)({gatt-list)){sub-def »{ :{sub-def>};
{grelname) and {gatt-list) define a scheme of a GCS
relation to be defined. {sub-def) is called a subdefinition
of the GCS relation:

{sub-def): :=((target-list)) where {(qual)

The target list and qualification are the same as QUEL.
The (sub-def) defines a join of relations like QUEL.
The list of subdefinitions delineated by colons means that
the GCS relation is the union of results each of which is
derived with respect to each subdefinition.

The drop is used to remove the defined GCS relation
from the GCS.

In order to integrate LCS relations into a GCS
relation, the LCS relations have to share the common
union-compatible parts. The relationships are expressed
by set-theoretical expressions on semantic links as shown
in Fig. 2.1. For example, the expression PRJ2 [pno,
pname] o PROJ [no, name] shows that both projections
are union-compatible and PROJ [no, name] contains the
same value set as PRJ2 [pno, pname]. PRJ1 U PRJ2 in-
dicates that both are union-compatible. Fig. 2.2 shows
the definition of a GCS relation PROJECT by means of
the GSDL based on the semantic links as shown in Fig.
2.1. Such definitions of GCS relations are stored as the
distribution information. This information is stored

site 1
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drange (pl, p2, p) (PRJ1: 1, PRJ2: 2, PROJ: 3);
define ESR PROJECT (no, name, budget, location)

(p. no, p. name, p. budget, location=p. loc) } W
where p. no=pl. pno and p. name=pl. pname:
(p. no, p. name, p. budget, location=p. loc) } @
where p. no=p2. pno and p. name=p2. pname;

Fig. 2.2 The definition of the GCS relation PROJECT.

redundantly at every site and used to process the query
decomposition.

3. Query Decomposition

The query decomposition process is composed of two
subparts: the decomposition of GCS relations referenced
by a GCS query into corresponding LCS relations, and
the processing of inter-site joins. Query modification
technique [STONM?76] can be adopted for doing the first.
Since the network causes a bottleneck of the distributed
database system, the question is how to process the
second efficiently is very significant in the query decom-
position. This problem is closely related to a way of
designing. In the case of top-down designing, data can
be allocated to sites so that query processings are
localized. Furthermore, sizes of intermediate results
can be estimated more easily. However, in the case of a
bottom-up design, since data have existed already
independently of applications’ requirements, more
inter-site processings may be required and it is difficult
to estimate the sizes of intermediates. [MAHMS79,
ADIBMS80] also proposes query decomposition
algorithms based on dynamic decisions. [MAHMS79]
uses the graph representation of the query. In his graph,
the conjunctive and disjunctive relationships between
links among the nodes are confused. That is, the rela-
tionships between the graph and query is not clear. By
defining the query graph in which the conjunction of
links represents the query qualification, we can make
clear the meaning of the query graph. [ADIBMS80] uses
the pipeling method of tuple transmissions based on
the binary tree representation of the query. But, since his
method is essentially based on the user defined sequence
of algebraic operations, it is still a problem to determine
how much the transmission cost is optimized by his
algorithm. Our algorithm has the a possibility of being
optimized because it is based on the non-procedural
representation of the query, i.e. query graph. Further-
more, we make clear the feasible management
mechanism of our algoritm under actual situation, and
also show the system architecture (in Ch. 7).

3.1 Basic Assumptions

We make the following assumptions [HEVNA78] on
the network:
a) It is a site-to-site type.
b) It is always lightly loaded. Therefore, there is no
need for considering queueing delay.
c) Local processing costs can be ignored compared
with communication costs. An additional assumption

is made.

d) Communication cost depends on distance, and
time. A logical cost, LC,;, is defined as a delay time for
transmitting a packet from site i to j. It is also propor-
tional to the number of hops between them.

We also make the following assumptions on
processings at sites:

a) Each site has a working space managed in a
relational form. Relations transmitted from the other
sites and results of joins are stored in it.

b) Each site has two kinds of logical processors: a
global database processor (GDP) and local database
processors (LDPs) [TAKIM79]. The GDP plays a role
of the query decomposition, integration, and manage-
ment of the distribution information and working space
at each site. Especially, the GDP to which a GCS query
is issued is called a coordinate GDP (CGDP) that is a
centralized controller for processing the query. The
LDP is responsible for the query translation, homo-
genization, and management of the heterogeneity
information, and exists against one database. LDPs
which support data required by the GCS query are
cooperated under the CGDP’s control.

Data replication is an important concept for
availability and reliability purpose [ROTHJ77]. How-
ever, in a bottom-up system, no replication can be
assumed. As stated in Ch. 2, the existence of replication
rather means that the semantic link between LCS rela-
tions containing such replication exists.

3.2 Objectives

The query decomposition purposes largely to generate
an optimal sequence of transmissions of relations. The
objectives which have been taken up [HEVNAT78] are to
minimize the communication cost and the response time.
The network causes a bottleneck of the distributed data-
base system due to its restricted capability. On the other
hand, each site has some processing capacities. There-
fore, in order to achieve these objectives, it is necessary
to reduce the network traffic for query processing and
process queries in parallel at multiple sites. Works which
have been done so far [CHUW79, HEVNA78, EPSTR7S,
WONGE?77] aim at achieving the objectives. Their
characteristic is that strategies for transmitting rela-
tions are determined by estimating sizes of inter-
mediates in an off-line manner. This estimation is based
on statistics on relations such as selectivities and car-
dinalities. The selectivity [HEVNA 78, SELIP 79] of an
attribute is defined as the ratio of the attribute cardinality
to the cardinality of the relation to which it belongs. This
definition can be true under an assumption that values of
the attribute are uniform-distributed. But we think that
there are still problems whether actual distribution of
values follows well this assumption. In order to make the
selectivity more precise, [CHUW?79] proposes a method
such that selectivities of values which are used frequently
are accumulated in the directory each time the values are
accessed. However, it is noted that the more precise
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statistics on selectivities we have, the more storages are
required.

We argue the following points. First, the performance
information like selectivities and cardinalities have
dynamic properties compared with the schema informa-
tion. Secondly, the query decomposition and its required
information, i.e. the distribution information, have to
exist at the same site for efficiency. It implies that every
site has to provide a full copy of the distribution in-
formation. If each site provides such dynamic informa-
tion redundantly, the overhead for not only storing but
also controlling consistency of and concurrent access
to them becomes serious and enormous [BERNPS80].
Besides the objectives as stated above, therefore, we
would like to add on more objective, i.e. to keep the
information required by the query decomposition as
small and static as possible.

We can summarize these discussions as follows. First,
if every site has the facility of the query decomposition,
the distribution information should not include the
performance information like selectivities. Secondly, we
cannot obtain necessary and sufficient performance
information to decide strategies in an off-line manner.
Therefore, we would like to propose an algorithm such
that strategies are decided operationally and information
required are kept static and small.

3.3 Strategies

Our strategies for processing inter-site queries are as
follows. First, the CGDP decides consequent stages
dynamically based on the statistics of result relations of
the preceding stages. This results in small and static
distribution information. Here, the stage is defined as
the unit of inter-site processings, i.e. the pair of a
transmission of a relation and its join.

Secondly, the query parts referencing only one site are
processed locally at the site before the inter-site parts are
processed, because the local processings are neglectable
in cost and result in the reduction of sizes of relations to
to transmitted.

Thirdly, if two relations at different sites are to be
joined, the smaller one is transmitted to the larger
through a path with minimum transmission cost. We
do not consider strategies such that two relations at
different sites are transmitted to an other site and
joined there.

Lastly, if all the strages issued by the CGDP are not
complete, if there exists a relation not being processed
and a path with transmission cost less than some
threshold value, then it can be transmitted through the
path. Hence, more than one stage can be processed in
parallel.

3.4 Query Normalization

A qualification part of a GCS query is generally
written in an arbitrary boolean combination form of
comparison predicates. First, it is normalized in a
disjunctive normal form. Next, the normalized query is
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range (14, * -, 1m) (L1 81, *s Lim? Sm)
retrieve into R (ry=a exp,," * -, ry=4a exp) where qual;
qual: :=¢; and- - -and ¢y,
¢;: :=cpred,, or- - -or cpred;,

Here, cpredij is either a join or a restriction predicate. All pre-
dicates cpred,; in ¢, have to reference the same variable (s). The
aexp; is an arithmetic expression over local attributes.

Fig. 3.1 Normal Form of the Query.

further decomposed into a set of queries each of which
has each disjunct as its qualification. It is noted that the
qualification is in a conjunctive normal form [Fig. 3.1].
Such a query is called a decomposed GCS query. This
process is called a horizontal query decomposition. Each
decomposed query can be executed independently. The
result of the original query can be obtained by taking
the union of results of the decomposed ones.

Then, by looking up the distribution information, the
semantic correctness of the target-list and qualification
is checked for each decomposed query. Finally, its tree
representation is constructed. This process brings in the
easiness of logical handling of relational queries. But,
this does not mean that it results in the optimal process-
ing of the queries. We think that, in order to adopt the
query modification method, it is necessary to normalize
queries in the disjunctive normal form. There are still
problems such as how to enhance the performance to
process “‘or” like “x.a=y.a or x.a=z.a” (y#2).

3.5 Query Modification

The horizontally decomposed GCS query is translated
into queries referencing corresponding LCS relations by
means of query modification [STONM?76]. That is,
first, GCS attributes in the GCS query are replaced by
expressions defined over LCS attributes, which are
stored in the distribution information. Then, qualifica-
tions in definitions of the referenced GCS relations are
conjuncted with the query’s qualification. The resultant
query is called a global LCS query. A GCS definition
includes generally more than one subdefinition [see 2].
Hence, a global LCS query is created with respect to
each combination of subdefinitions, each of which
belongs to the definition of each GCS relation referenced
by the GCS query. The modified query is normalized in
a conjunctive normal form.

Let us consider the GCS relation PROJ in Fig. 2.2 and
a following query: “find names of the projects which
exist at JIPDEC.” It is also written in QUEL as follows:

range pr PROJ;

DGQ: retrieve into R (pr. name)

where pr. location=“JIPDEC”;
By looking up the distribution information for the GCS
relation PROJ, we can find its definition as shown in
Fig. 2.2. From the 1st and 2nd sub-definitions marked(1)
and (2), respectively, the following global LCS queries
are produced:

range (pl, p2, p) (PRJ1: 1, PRJ2: 2, PROJ: 1);
GLQI: retrieve into Rl (p. name)

where p. loc="JIPDEC” and
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(1) p.no=pl. pno and p. name=pl. pname;
retrieve into R2 (p. name)

where p. loc="JIPDEC” and

(2) p.no=p2. pno and p. name=p2. pname;
The result of the GCS query, R, is the union of Rl and
R2.

GLQ2:

4. Initial Local Query Processing

The global LCS query references the LCS relations at
different sites. The next problem is how to process such
an inter-site query. The query can be divided into two
parts. One references only one site, and the other
multiple sites. The former parts have to be processed,
first, closely at one site, because it results in a reduction
of relations to be transmitted and its cost is assumed to
be neglectable. We call such a local processing an initial
local query processing.

It is composed of the following functions:

1) to make a query graph[TAKIM80] of the global LCS
query which is called a GLQ graph [see Fig. 4.1],

2) to classify nodes in the GLQ graph into groups
each of which consists of the nodes at the same site and
connected by join-links in the site,

3) to generate LCS queries each of which corresponds
to each group, and send them to the corresponding sites.
4) Each site processes these LCS queries which
reference relations only in the site, and generates the
intermediate relations which are to be processed in
cooperation with the other sites [see Ch. 5].

For example, let us consider the GLQ graph in Fig.
4.1. The boxes represent tuple variables. The links
between nodes are join-links. The arrowed links are
result-links that represent result attributes. The
remaining links are restriction links. The dotted circles
indicate the groups in which all nodes are locally con-
nected. The conjunction of formulas expressed by these
links represents the qualification of the query.

The LCS queries generated in such a manner is written
in QUEL. Its target list has to contain attributes for

: node for a tuple varisble Ri: result relation generated
by the ILQP.

site 2
0O
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0
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Fig. 4.1 An Example of the GLQG.
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inter-site joining, along with the result attributes specified
in the original global LCS query. The result relations of
the LCS queries are stored in the working space of the
site.

Fig. 4.2a shows the resultant query graph. As seen
in this figure, it contains only inter-site joins. Hence, it
is called a join query graph.

5. Transmission Scheduling

We consider the generation of a transmission schedule,
i.c. an efficient sequence of stages, from the join query
graph. Let 7’ and » be relations at sites 7 and j, respec-
tively. The stage consists of two subparts: a transmission
of r’ from i to j, and a join of r’ and r and storing of the
result as r at j. Hence, let r': i—j, c(r': i—j), and r': i—>
j: r be such a transmission, its cost, and its stage, respec-
tively. Let LDP; be the local database processor at site k.

Our algorithm for generating the transmission
schedule is operational but not static. This means that the
CGDP decides consequent stages based on monitored
information on results of the preceding stages. To
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monitor such results, each GDP manages two kinds of
directories along with the distribution information, i.e.
logical transmission cost table (LCT) and query process-
ing information (QPI). In the QPI, the performance
information of intermediate results are stored in two
relations: QPI/REL (site-no, rel-no, cardinality, width)
and QPI/ATT (site-no, rel-no, att-no, width). Both
maintain the performance information on relations and
their attributes produced by stages, respectively. Such
information are carried back to the CGDP by
acknowledgement messages (ACKs) of stages from the
destination sites.

Each LCT entry, LC;;, shows the communication cost
between sites i and j. At present, LC;; is the number of
hops in the shortest path from i to j. Here, c(r: i—j) is
Ir[*LC;;, where |r| stands for the size of a relation r.

A primitive unit of our algorithm is composed of the
following parts: decision of next stage, reduction of the
join query graph, and update of the QPI. Initially, all
the nodes in the graph are marked FREE.

Suppose that a stage r’: i—;j: r is selected as the next
one. The CGDP modifies the join query graph. First,
it marks r’ SOUCE and r DEST in the graph. Then,
join-links one, each of which corresponds to a join-
link incident on r’, are attached to r. If r’ has a result-
link, it is also attached to r. In relation to such modifica-
tion of the graph, the QPI/ATT is updated so as to meet
the new scheme of . Let us consider the join query graph
in Fig. 4.2a. Suppose that a stage, R4:4—3: R3, is
selected. Then, the graph is reduced to one if Fig. 4.2b.
A join-link, j;, corresponding to j, is attached to R3.
Thus, j, is a conjunction of j; and js. A result-link, o3,
corresponding to o, is also attached to R3.

On receipt of an ACK for the stage, r': i—j: r, from
J, the CGDP trys to reduce the join query graph. First,
it removes ' and its related join-links from the graph.
The ACK carries the cardinality of the result relation of
the stage. Then, the QPI relations are updated using
information in the ACK. That is, all the tuples concern-
ing r’ are deleted from these relations and the cardinality
of r in the QPI/REL is updated by the new value carried
by the ACK.

Next, we decide the next stage. A stage, r': i—j: r, that
satisfies the following conditions is selected as the next
stage:

1) r'is marked FREE,

2) ris adjacent to r’ in the join query graph,

3) ris marked either FREE or DEST, and

4) c(r: i—j) is not only the minimum in the graph but
also less than some threshold value (THV).

The 1st condition ensures that 7’ is not being executed.
The 2nd condition guarantees that there exists a join
referencing ' and r. The 3rd one ensures that, even
if r is a destination of the other stages that have not
completed yet, r’ can be sent to r. It means that transmis-
sions of more than one stage can be overlapped in a
palallel manner. Since transmission costs are overwhelm-
ing, we think these overlappings are effective. The last
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condition plays a role of protecting relations of larger
size from being transmitted when relations of smaller
size are currently being executed. If nodes with transmis-
sion cost <THYV are not found, the CGDP waits for com-
pletion of stages being executed. If all nodes are marked

CGDP algorithm
0) [assumptions]

—let r': i—j: r be a stage where ' and r are a source relation at

site / and a destination relation at site ;.
1) [initial local query processing]

—an ILQP is considered as a stage :—j: r where r is a result
relation of it.

—form the LQs each of which corresponds to each subgroup
which consists of the nodes not only at the same site but
also connected by join links.

—send the LQs to the corresponding sites.

—create the JQG from the GLQG, whose nodes are the results
of the ILQP and links are the inter-site joins.

—mark all the nodes in the JQG “FREE”.

—initiate the QPI which contains all the relation schemes
corresponding to the nodes in the JQG.

—initiate the THV (threshold value) using the DI.

2) [wait for ACKs}

—.if the ACK from r is received, then if »* corresponding to r

is NIL, i.e. ACK for the ILQP, then go to 4).
3) [reduction of the JQG]

—delete r’ from the JQG.

—-delete the join-links incident on r’ from the JQG.

—delete tuples concerning r’ from the QPIL.

4) [update of the QPI]

—if the ACK is not for the most recent stage to r, then go to 2).

—update the information of r in the QPI using the information
carried by the ACK.

—mark r “FREE”.

5) [final result]

—if the reduced JQG contains only one node, then send it to

the CGDP, i.e. the node is a final result. terminate.
6) [decide a next stage]
—select the nodes r” as a source node and r as a destination
note such that they satisfy the following conditions:
i) r’ is marked “FREE”,
ii) ris adjacent to r’ in the JQG,
iii) 7 is marked either “FREE” or “DEST”, and
iv) e(r’: i—j) is the minimum and less than the THV value.
Here, c(r': i—j)=Ir'|*LCy,.
7) [form a stage and send it to the destination site]

—if such r and #’ are found, then

—form a stage, r':i—j:r.

—send a transmission command (7) to site / and a join
commands (J) to site j.

—mark r’ “SOURCE” and r “DEST”.

—set up the join-links between  and the nodes adjacent to r’
except r, each of which corresponds to an link between r’
and each node adjacent to r'.

—if »” has the result-link, move it to r.

—update the QPI/ATT so as to meet a new scheme of r.

8) [satisfiable r and r’ are not found]

—if all the nodes are marked “FREE”,
then reset the THV using the QPI. go to 6)
else go to 2).

where

GLQG: global LCS query
ILQP: initial local query processing
JQG: join query graph

LQ: LCS query
THV: threshold value

Fig. 43 TS Algorithm for the CGDP.



Distribution Problems in Distributed Database Systems: Integration and Query Decomposition 145

FREE and no nodes satisfying this condition can be
found, the THV value is reset using the QPI. At present,
the THV value is determined to be the average size of
nodes.

The detailed description of our algorithm for the
CGDP is shown in Fig. 4.3 and for the LDP in Fig. 4.4.

6. An Example of Transmission Scheduling

Let us consider Fig. 4.2. Suppose that all the initial
local query processings have finished, i.e. all nodes are
marked FREE, and the logical transmission table (LCT)
and sizes of relations are given in Figs. 4.5 and 4.6,
respectively. Off course, the initial local query processing

LDP algorithm

TRANS

1) if the transmission command (7T is received from the CGDP,
wait for the WSA (WS allocated) from the destination site.

2) if the WSA is received, transmit the source relation along with
its scheme to the destination site.

3) if the ACK for the transmission is received, then release the
source relation, r’.

JOIN

1) if the join command (J) is received from the CGDP, then if
the WS is available, then send WSA to the source site sort r’
on the join attribute, wait for transmission.

2) if all the source relation is received, send ACK to the source
site.
join the source relation to the destination relation with respect
to thet arget-list and qualification in the join command using a
merge-join [SELIP79). form the information on the statistics
of the result relation of this join.
send ACK along with this information to the CGDP.

1) if the LQ is received from the CGDP, translate the LQ into a
DML program by the QT.
execute the DML program.
store the result to the WS as a relation.
send ACK to the CGDP.
REC
1) sort v’ on the join attribute while receiving it.
2) if r’ is received, send ACK to the source site.

Fig. 44 TS Algorithm for the LDP.

~.

LC,

i, j=site numbers

WA N -
BB WA WN
—~ NNV NN

Fig. 4.5 Logical Transmission Cost Table (LCT).

LCS relations sizes (in bytes)
R1 500
R2 500
R3 200
R4 100
RS 300

Fig. 4.6 The Sizes of Relations.

and transmission scheduling can be overlapped. Each
LCT entry, LC,;;, represents a minimum hop number
between i and j. Let the threshold (THV) value be 500.
Let ST, and ACK, be the k-th stage and its ACK,
respectively. The communication costs with respect to
join-links are calculated as follows:

Jj2: o(R1:1-2)=¢(R2: 2—1)=500*2=1000

j4: (R4:4-1)=100*5=500 *.'|R4| <|R1|

j5: ¢(R3:3-1)=200*2=400 . |R3|<|R1|

*j6: c(R4:4-3)=100*1=100<500 °.’|R4|<|R3|

j8: ¢(R3:3-4)=200*1=200 " |R3|<|RS|
Since R4:4-3: R3 has the minimal cost, it is selected
as ST, and the transmission and join commands are
sent to 4 and 3, respectively. R4 is marked SOURCE and
R3 DEST. The graph is modified as shown in Fig. 4.2a.
As ST,, R5: 4—3: R3 is selected [see Fig. 4.2b], because
R3 and RS are marked DEST and FREE, respectively,
and ¢(R5:4—3)=300<500 that is also the minimum.
Here, R4 and RS are transmitted in parallel.

Then, let us try to decide ST;. Here, only R1 and R2
are marked FREE. Costs for possible transmissions are
as follows:

j2: o(R2:2-1)=c(R1: 1-2)=500*2=1000> 500

Jj9: c(R1: 1-3)=500*3=1500>500.

Hence, no satisfactory stage can be found. Since R3 is
not marked FREE, we wait for ACK,; and ACK,. On
receipt of ACK,, R4 is deleted from the graph and
QPI, and ACK, is waited for. On receipt of ACK,, RS
is deleted and R3 becomes FREE. Suppose the size of
R3 is 200. Since ¢(R3: 3—1)=600> 500, the THV value
is reset, i.e. THV «(1500+ 1000+ 500)/3 =1000. So, ST,
is R3:3-1: Rl and executed [see Fig. 4.2c]. R3 is
marked SOURCE and R1 DEST.

Since R2 is FREE and ¢(R2:2—1)=1000, R2:2—1:
R1is selected as ST, [see Fig. 4.2d], and R2 is transmitted
to R1. When both stages complete, the join query graph
is reduced to one node graph [see Fig. 4.2¢]. Since it is a
final result, it is transmitted to the CGDP.

Fig. 4.2e summarizes this example. The horizontal axis
shows time.

7. The Architecture of the GDP and LDPs

Fig. 7.1 shows the architecture of the global database
processor (GDP) and local database processors (LDPs)
for query processing. The User’s query is stated to the
GDP at his site, i.e. CGDP. The CGDP takes it and
translates it into global LCS queries using the distribution
information. The ILQP creates LCS queries from the
global LCS query, issues them to corresponding LDPs,
and creates the join query graph. The TS issues T and J
commands for executions of stages generated from the
graph and controls their executions, monitoring their
intermediate results. The T command, T (k,i,r’,j),
means a transmission of the k-th stage, r': i—j. The J
command, J(k,i,r', j, r, target-list, qualification, n),
means that the source relation r’ to be received from
is joined to the destination r at j with respect to the
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CGDP

[:] . processing

*  functions

=> : flow of data
wmp : flow of commands

r': source relation

r : destination
relation
i : execution sequence

LDPi (destination LDP)

Fig. 7.1 The Architectures of the CGDP and LDPs.

target-list and qualification. The  is a size of r’, which is
maintained in the QPI. On receiving it, the LDP; can
allocate the working space for receiving r'. The target-
list includes join-attributes of » with respect to its
adjacent nodes except r and join-attributes of r with
respect to its adjacent nodes except »’ along with the
union of result-attributes of » and r’.

An LDP exists for one database. The LDP is com-
posed of two main modules. The one is called the query
translation [TAKIMS80]. It translates the LCS query
written in QUEL into an executable sequence, e.g.
DBTG DMLs, executes it, and stores the result as a
relation in the working space (WS). The other is a WS
manager (WSM). It is composed of four submodules,
WS, JOIN, TRANS, and REC. The WS is a storage for
storing intermediates. It will be implemented as a SAM
file. The TRANS takes a 7 command from the CGDP
and transmits the source relation to the destination. The
REC of the destination also sorts it on a Jjoin-attribute
while receiving it. The JOIN takes a J command and
sorts the destination relation on a join-attribute. If the
source relation is all received, the JOIN joins them, stores
the result as the destination relation, and sends ACK
with the information on the result to the CGDP. Since
both relations are sorted already, they can be easily
joined by means of merge-join technique[SELIP79).
Thus, we think it is easy to implement the WSM.

8. Concluding Remarks

In this paper, we have presented mainly the distribu-
tion problems in a distributed database system. The
distribution problems consist of three subproblems:
1) integration, 2) query decomposition, and 3) distribu-
tion information. The integration is a process which
derives the GCS relations from the LCS relations. It is
also similar to the view definition [STONMT76] in the
relational model. The main difference between them is
that only join operations are used as multi-relation
operations in the view definition, but union operations
are required in addition to joins in the integration. We
have proposed a GCS definition language (GSDL)
which is an extension of a relational calculus language
QUEL so as to take the union of relations.

The set of GSDL statements is called a distribution
definition for the GCS. The correspondence between the
GCS and the LCSs is expressed in a relational calculus
form. It is also sotred in the distribution information in
a relational form. It is desirable for the directory infor-
mation to exist at the same site as the query decomposi-
tion process which requires it. This means that the
distribution information is stored fully redundantly at
each site. In order that the information is fully
redundantly stored and the overhead for controlling the
consistency and concurrency of redundant copies is
reduced, it has to be as small and static as possible.

Our query decomposition algorithm which is called a
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TSA aims at minimizing the distribution information and
keeping it static. The decomposition algorithms developed
so far have been based on the estimation of the size of
the intermediate results. The more information and
statistics of relations we have, the more complete our
decisions of strategies can be. However, it requires a
large amount of information which are also dynamic.
That is, there exists a trade-off between complete decision
of the strategies and the management of required infor-
mation. From such an observation, then trying to decide
the complete strategy in an off-line manner implies a
large amount of dynamic information. We think that it
is better to decide the strategy operationally. In this
paper, we made clear the meaning of the query graph
and the feasible management mechanism of query
decomposition based on the dynamic decision.

Every LDP has to have a WS manager which is also
a relational database. One of its main tasks is to join
two relations. It is very simple and easy to implement,
because the source relation is sorted by the REC and the
destination one is also sorted before joining.

We have already implemented the QM and ILQP
in the GDP. We are now trying to implement the
transmission scheduling using our in-house computer
network JIPNET [YAMAK 75].
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