Practically Fast Multiple-Precision Evaluation of LOG(X)

TATEAKIL. SASAKI* and YASUMASA KANADA**

A new algorithm for multiple-precision evaluation of log (x) is presented. The algorithm is based on the well-
known g-expansion formulas for elliptic theta functions and the famous arithmetic-geometric mean of Gauss.
The algorithm is a generalization of the Salamin-Brent algorithm based on the arithmetic-geometric mean. The
efficiency of the new algorithm is shown by numerical experiments.

1. Introduction

This paper describes a new algorithm for multiple-
precision evaluation of log (x) with a real argument x.
If the relative error of a number is of O(27*) with p a
positive integer, we say the number is of precision p.
The algorithm to be described in this paper requires
O(M(p) log (p)) + O(M(p)/p) single-precision opera-
tions for evaluating log (x) to precision p, where M(p)
is the number of single-precision operations necessary
for multiplying two numbers of precision p. The time
complexity of the algorithm can be reduced to
O(M(p) log (p)) by a simple argument reduction. The
algorithm is based on the well-known g-expansion
formulas for elliptic theta functions [8, p. 229] and the
famous arithmetic-geometric mean cf Gauss [7, p. 352].

The problem of evaluating elementary functions to
any given precision has been investigated by many
authors. Among others, Brent [3] presented many
algorithms having the time complexity O(M(p) log (p))
for exp (x), log (x), tan (x), atan (x), etc. In his method,
log (x) is evaluated by first solving a nonlinear equation
T(m)=x by Newton’s method to get m=T""!(x) and then
calculating U(m). Functions T and U are calculated by
quadratically converging iterative algorithms, which
require about 3-log, (p) and 2-log, (p) square root
evaluations, respectively. Numerical experiments show
that these square root evaluations require relatively
large overhead unless p is quite large and that the
O(M(p)p) Taylor series method which sums many terms
of the Taylor series for log (1 +x) turns out to be faster
than the Brent’s algorithm when p is less than several
thousands.

A much better algorithm of time complexity
O(M(p) log (p)), which was proposed by Salamin [see,
1] and by Brent [4], adjusts the argument x so that x>
4-272 and applies the arithmetic-geometric mean
iteration. This algorithm requires about 2-log, (p)
square root evaluations, and it is the fastest at present
for large p. The algorithm we propose in this paper is a

*The Institute of Physical and Chemical Research Wako-shi,
Saitama 351, Japan.
**Computer Center, The University of Tokyo Bunkyo-ku, Tokyo
113, Japan.

Journal of Information Processing, Vol. 4, No. 4, 1982

generalization of the Salamin-Brent algorithm, and it
improves their algorithm for p in an intermediate range.

Let us next comment on the Schwab-Borchardt
algorithm [2, 12]. This algorithm uses a simple iteration
relation which is a kind of arithmetic-geometric mean
iteration. Gauss suggested this relation to Pfaff in his
letter in 1800, and Pfaff promptly determined the limit of
the iteration. Pfaff’s result was, however, not published
and the algorithm was rediscovered by Schwab in
~1812 and by Borchardt in 1880. The Schwab-Borchardt
algorithm was seldom used because the error reduces
by a factor of only 4 after each iteration. In 1961,
Thacher [13] improved the error reduction factor up to
16, and in 1972, Carlson [6] improved the algorithm
drastically so that the error becomes O(2~"~") after
the nth iteration. This algorithm has, therefore, the time
complexity O(M(p)/p). In this algorithm, however,
about /p square root evaluations are necessary, which
requires quite large overhead in actual computation.

In our algorithm, only about log, (p) square root
evaluations are necessary and the \/p dependence of the
time complexity is due to the evaluation of a power
series of the form ¥ x”. An actual implementation of
our algorithm revealed that the evaluation of this power
series was quite fast for precision in an intermediate
range, such as p<5103~10*. For very large p, we can
reduce the computing time of the power series by a
simple argument reduction, and the algorithm reaches
the Salamin-Brent algorithm.

2. Elliptic Theta Functions and the Arithmetic-Geometric
Mean

We first summarize the necessary formulas from the
theory of elliptic functions. The first kind complete
elliptic integrals K and K’ for the modulus & are defined
by [8, Ch. 9]

/2 do
KEK<’°>=£ T2 6 M
K'=KKk"), k'=J1—k* ?)

We use the well-known g-expansion formulas for the
elliptic theta functions 6,(u) and 6,(x) [8, Ch. 10]. We
need only the values at ¥ =0:

248

03=0,(0)=1+2 f‘, (—1yg™, 3)
n=1

03=0,0)=1+2 Y ¢".)
n=1

If |g|«1 these series converge very fast. The complete
elliptic integrals K and K’ are related to g by the formula
(8, Ch. 18]

g=exp (—nK'[K) or =nK'[K=log (l/g).)

Furthermore, k (or k') and K can be expressed by 63
and 69 as

k=\/T=(83/09)% (or k'=(85/69)%), ©

K=n(09)%/2. Y]

Another formula we need is the famous arithmetic-
geometric mean of Gauss. Let g, =1 and b, =k, 0<k <1,
and calculate the nth terms a, and b, by the formula

an=(an—1+bn—l)/2v bu=\/an—1bn—li ngl (8)
Then, the series {a,} and {b,} converge quadratically to
a common limit. The limit is called the arithmetic-
geometric mean and given by [7, pp. 352-355 or 5]

lim a,=lim b,=n/2K".)

n—+w n—+ o
3. Algorithm

Suppose we are given ¢ such that 0<g<«1. Then,
using (3) and (4), we can evaluate 63 and 89 to precision
p+g, where g is a guard precision. Using (6) and (7),
we can evaluate k and KX to precision p+g. We cannot
directly evaluate K’ from 63 and 63, but we can evaluate
K' by the arithmetic-geometric mean iteration. Then,
according to the formula (5), the ratio nK’ to K gives
log (1/q). Note that, since g"*V*=¢"¢?"*1 we can
evaluate 63 and 03 by about 2./p multiplications and 2./p
additions of multiple-precision numbers. From these
arguments, it is clear that the following algorithm
evaluates log (1/q) to precision p:

Algorithm for log(1/q), 0 <q«1.

SIGN« —1;
T0~T3-QNN«Qeq;
02<0Q-Q; Q2N1<0Q2-Q;
while (ONN<QNN-Q2N1)>2"7 do
begin 70— T0+SIGN-QNN;
T3+T3+QNN,
SIGN« —SIGN;
Q2N1<Q2N1-02;
end;
T0+1-2-T0; T3«1+2-T3;
K—(1—-(T0/T3)"'/?;
A«1; B«K;
while (41— B)>2"7/% do
begin Q«(4 +B)/2;
B—(4AB)'7?;
A<Q;

T. sasaki and Y. KaNADA

end;
A—(A+B)2;
return n/(A- T3%).

The above algorithm is for argument ¢ such that
0<g«1. As we will explain in Sec. 4, a reasonable range
of ¢ is 0.01 $¢<50.1. Given an argument x for logarithm,
we can reduce the argument by dividing (or multiplying)
an integral power of 2. In our current program, the argu-
ment g is determined as

0.005<g=x/2/<001, jisan integer.
Then, we can calculate log (x) by the formula
log (x)=log (¢)+j-log (2),

with a precomputed value of log (2).
4. Efficiency of the Algorithm

Let us briefly discuss the time complexity of our
algorithm. Since the above algorithm is for the argument
q such that 0<g«l1, the first step of evaluation of
log (x), x>0, is to reduce the argument so that x
becomes much smaller than 1. This argument reduction
will make the g-expansion series for 83 and 63 converge
fast. If, however, x becomes very small then k also
becomes small and the arithmetic-geometric mean
iteration converges slowly. Therefore, a reasonable range
into which the argument is reduced is 0.01 <x $0.1. This
argument reduction can be done in O(M(p)) operations.

The best known method of evaluating the square root
of x to high precision is to use Newton’s iteration such as

1
yn+l=§(yn+x/yn)' (10)

Using this iteration and controlling the precision of y,
so that only the significant digits of y, are calculated,
we can evaluate the square root in O(M(p)) operations
[see 4 in details].

The arithmetic-geometric mean iteration converges
quadratically:

_ {(an+bn)/2}2_anbn ~ (an—'bn)z
" (gt b)) 2+ Jab, — 8a,.,

an+1_b

Hence, the evaluation of the arithmetic-geometric mean
to precision p requires O(log, (p)) iterations or
O(M(p) log, (p)) operations.

With the argument reduction mentioned above, the
evaluation of 83 and 09 requires O(M(p)./p) operations.
Therefore, the time complexity of our algorithm is
O(M(p) log (p))+ O(M(p)\/P).

Let us next consider the case where the argument ¢
is reduced to an extremely small value. If 0<g=~0,
formulas (3) and (4) give

05=1-2q+0(g*),
09=1+2q9+0(g*).
Then, formulas (6) and (7) tell us that

Practically Fast Multiple-Precision Evaluation of Log(x)

k=4/g(1—49+0(g%)),
K=(n/2)(1+44+0(g?)).

Therefore, if we reduce the argument g so that 4,/g <2~ #/?
and calculate the arithmetic-geometric mean a, with
the initial values a, =1 and b, =k =4./g, then we have

Iog(1/q)=7rK’/K=a£(l+O(2"’)), (n
or
K'=2ai=(1+0(2"’)) log (1/g). (12)

The relation (12) is nothing but the one on which the
Salamin-Brent algorithm for log (x) is based. Therefore,
our algorithm is a generalization of the Salamin-Brent
algorithm. It is easy to see that, if we choose the value of
b, as small as 2772 about 2-log, (p) iterations are
necessary to calculate the arithmetic-geometric mean
with the accuracy O(277). That is, the time complexity
of our algorithm becomes O(M(p) log (p)) by a simple
argument reduction.

5. Numerical Tests and Discussions

In this section, we define the precision of a number N
by the number of significant decimal digits of N and
denote it by P. The relation between p and P is P=
pllog; (10).

We have implemented our algorithm described in
Sec. 3 on our arbitrary precision real arithmetic system
[11] written in LISP. The reason of using a LISP-based
system is that its facility of detailed precision handling
allows us to write an efficient program [9]. We have also
programmed four other algorithms for log(x) and
compared them with our algorithm. Table 1 shows the
results, where the elliptic method uses our algorithm
with g~0.01, Taylor’s method 1 sums terms of the
Taylor series for log (1 +x) after reducing the argument
into the range |x|<0.05, Taylor’s method 2 uses the
Taylor series for log(l+x)/(1—x) with |x]|<0.05,
Newton’s method solves the nonlinear equation x=
exp () by Newton’s iteration method to get y=log (x),
and the arithmetic-geometric mean method uses the
Salamin-Brent algorithm. The exp (x) in Newton’s
method is evaluated by first reducing the argument into
the range 0<x<27V? and then summing terms of the
Taylor series for exp(x). The time complexity is
O(M(p) log (p)) for the arithmetic-geometric mean
method, O(M(P),/P) for the elliptic method and
Newton’s method, and O(M(P)P) for Taylor’s methods
1 and 2.

It should be commented that we have programmed
routines for /x, exp (x) and log (x) to be as efficient
as possible. For example, the nth term of the Taylor
series for exp (x), log (1 +x), log (1+x)/(1—x), 63, or
09 is calculated only up to the (P +G)th decimal place
with G a number of guard digits; the evaluation of the

249

Table I Comparison of five algorithms for log (x). The numbers
listed are times (in milli-seconds) for evaluating log(2)
to the Pth decimal place. For the details of the algori-
thms, see the text. The computation was made on a
FACOM M-200 computer by using a LISP-based “big-
float™ system. The times listed here do not contain gar-
bage collection times, because the garbage collection
times are peculiar to LISP-based systems and they depend
on the memory size used (in our experiment, the garbage
collection time averaged about 59). The constants =
and log(2) which are necessary in the elliptic method were
precomputed to the 10100th decimal place.

Taylor’s Newton’s a-g mean

Taylor’s

P elliptic
method method 1 method 2 method method
20 58 21 15 116 74
40 76 35 23 182 115
60 82 53 30 212 142
80 107 72 40 307 162
100 114 94 51 350 196
150 167 160 84 589 251
200 194 255 130 732 297
400 431 997 485 2,085 687
600 879 2,594 1,223 5,513 1,399
800 1,254 5,430 2,544 8,804 2,133
1000 1,712 9,892 4,533 13,670 3,279
2000 6,259 11,240
4000 24,750 47,280
6000 63,160 114,100
8000 101,400 211,500

10000 196,900 334,100

square root /a,b,, in the mth step of the arithmetic-
geometric mean iteration is carried out by using a,,,, =
(a,, +b,)/2 as the initial value y, for Newton’s iteration
(10) so far as a,, ~b,,, reducing the number of iterations.
(Note that, in the Salamin-Brent algorithm, a,=1 and
b,=0(10""?) and a,»b, for m<log, (P). Hence,
steps of the first half of the arithmetic-geometric mean
iteration in the Salamin-Brent algorithm cannot be made
efficient by this technique.) However, we have used
O(P?) algorithms for multiplying and dividing two
P-digit numbers.

We can see that the methods using Taylor series are
quite efficient for P <200, although they are inefficient
for P 1000. Our algorithm using elliptic theta functions
is the most efficient for P2400, although it takes con-
siderable overhead for P <200. Furthermore, our algo-
rithm is faster than the Salamin-Brent algorithm
even for relatively large P although the asymptotic
time complexity of our algorithm is worse than that of
the Salamin-Brent algorithm. The algorithm using
Newton’s method is the worst of the five, although its
time complexity is asymptotically better than that of
Taylor series methods.

In order to investigate our algorithm further, we
measured times for computing /2, the arithmetic-
geometric mean in both our and the Salamin-Brent
algorithms, and elliptic theta functions in our algorithm.
Table 2 shows the results. We can see that our square-
root routine is quite efficient making the calculation of
the arithmetic-geometric mean fast. Nevertheless, the

250

Table 2 Timing data (in milli-seconds) for evaluating 1/2 by our
square-root routine, and the arithmetic-geometric mean
and 03 & 63 which are necessary for calculating log(2)
by our and Salamin-Brent algorithms. Garbage collec-

T. Sasakt and Y. KANADA

Table 3 Calculation of log(z) by four algorithms. The times (in
milli-seconds) do not contain garbage collection times.
For the details of the algorithms, see the text. The timing
data by the a-g mean method are almost the same as those

tion times are not included. in Table 1.
a-g mean a-g mean ellipti Taylor’s Taylor’s Newton’s
P v2 our Eiethod 08 & 63 S-B ?nethod P meglo(:i m:t};llod 1 met);lod 2 method
20 7 45 5 69 20 57 28 18 99
40 9 61 7 109 40 75 53 28 156
60 10 65 9 137 60 82 80 40 233
80 12 87 12 155 80 107 111 53 264
100 12 92 13 189 100 115 146 69 306
150 16 137 19 242 150 172 257 113 518
200 17 155 26 286 200 205 407 178 643
400 31 345 61 666 400 498 1,592 677 1,848
600 58 726 110 1,363 600 1,071 4,153 1,742 4914
800 75 1,015 173 2,079 800 1,653 8,701 3,624 7,892
1000 94 1,369 248 3,202 1000 2,411 15,840 6,564 19,120
2000 5,104 833 10,980
% iﬂf?g (25:2;8 1]‘2:(3,’)3 as 0<g«]1. Since our algorithm includes the Salamin-
8000 85,750 11,120 207,700 Brent algorithm as a limiting case, we can always make
10000 328,300 our algorithm faster than the Salamin-Brent algorithm

172,700 17,100

arithmetic-geometric mean requires much more com-
puting time than the elliptic theta functions. The com-
puting time of the arithmetic-geometric mean in the
Salamin-Brent algorithm is about two or a little larger
than that in our algorithm, as was expected.

Readers may wonder why the computing times of
elliptic theta functions are so small. The reason is a
careful control of the precision. In our algorithm, the
argument reduction is so made that the reduced argu-
ment becomes a number of as few figures as possible
when the original argument is a number of few figures.
For example, the argument x=2 is reduced to the
argument ¢=2/256=0.0078125. Furthermore, after
calculating each term of a power series, we truncate each
number concerned by discarding figures in high preci-
sion places which do not contribute to the significant
digits of the answer. Therefore, although we are calculat-
ing the answer with P significant digits, we are mostly
handling numbers whose figures are not as many as P.

According to the above discussion, our log (x) routine
and routines using Taylor series and Newton’s method
will require more computing times when the argument x
is composed of many figures. In order to investigate this,
we have calculated log (n) by these four algorithms.
Table 3 shows the results. We see that the computing
times increased considerably compared with those in
Table 1. However, our algorithm is still the fastest among
the five algorithms we have compared when P 2 400.

Remember that our algorithm has a freedom in
reducing the argument q. The ¢ may be any value so far

by optimumly setting the value of ¢q. The above experi-
ments indicate that such optimized algorithm will be
the most efficient at present for P 2400~ 1000.

Acknowledgements

The authors thank Prof. R. Brent for his useful
comment for improving the program and information.

References

1. BEELER, M., GosPER, R. W. and SCHROEPPEL, R. Hakmem,
Memo No. 239, M.LT. Artificial Intelligence Lab. (1972), 70-71.
2. BORCHARDT, C. W. Gesammelte Werke, Berlin, 455-462 (1888).
3. BrenT, R. P. Fast multiple-precision evaluation of elementary
functions, J. Assoc. Comput. Mach. 23 (1976), 242-251.

4. BrenT, R. P. Analytic Computational Complexity, Academic
Press, New York-San Francisco-London (1976), 151-176.

5. CARLsON, B. C. Algorithms involving arithmetic and geometric
means, Amer. Math. Monthly 718 (1971), 496-505.

6. CArLsON, B. C. An algorithm for computing logarithms and
arctangents, Math, Comput. 26 (1972), 543-549.

7. Gauss, C. F. Carl Friedrich Gauss Werke, Bd. 3, Géttingen
(1876).

8. Hancock, H. Theory of Elliptic Functions, Dover, New York
(1961).

9. KANADA, Y. and Sasaki, T. LISP-based big-float system is
not slow, SIGSAM Bulletin 15 (1981), 13-19.

10. SarLamin, E. Computation of n using arithmetic-geometric
mean, Math. Comput. 30 (1976), 565-570.

11. Sasaki, T. An arbitrary precision real arithmetic package in
REDUCE, Lecture Notes in Comput. Sci. 72, Springer-Verlag
(1979), 358-368.

12. ScHwas, J. Elémens de Géométrie, Vol. 1, Nancy (1813),
103-107.

13. THAcHER, H. C. Iterated square root expansions for the
inverse cosine and inverse hyperbolic cosine, Math. Comput. 15
(1961), 399-403.

(Received January 28, 1982: revised May 6, 1982)

