Selectively Delayed Evaluation Through
Program Transformation

KivosH1 Ono*

By selectively delaying evaluation of S-expressions in LISP, one can avoid overheads of conventional (indis-
criminately) delayed evaluation schemes without losing their advantages.

Selectively delayed evaluation is guided by the strategy ‘‘never delay the evaluation of the first argument (car
part) of cons.” This strategy restricts the possible forms for representing S-expressions to the following three:
(1) explicit form not being delayed at all, (2) an intermediate form with only cdr part being delayed and (3)
an implicit form being delayed on the whole. These forms are distinguished from one another by a translator,
which generates object LISP programs which are executable in any conventional LISP system without run time
checks on the forms, and whose execution corresponds, in effect, to delaying evaluation of selected S-expressions

in source LISP programs.

With this method, potentially infinite lists in cdr direction can be dealt with, and the heap storage space re-
quirement was reduced from O(2") to O(n) with 28 % loss of run time speed for a program which generated all
the elements of the powerset of a set containing » elements.

1. Introduction

This paper describes a selectively delayed evaluation
scheme which avoids run time overheads of conven-
tional delayed evaluation schemes [3, 5], but makes the
best use of their advantages so as to reduce heap storage
space requirement of computation at run time. Here,
the heap storage space requirement means the minimum
number of heap storage cells necessary for the com-
putation to be completed. In the following, we explain
this idea using terminologies of LISP, but the idea itself
is applicable to other programming languages in which
data structuring facilities are available and functions are
treated as ‘“‘values.”

The delayed evaluation schemes tend to reduce
the heap storage space requirement by allowing
coroutine-like interactions between functions [4, 6],
in which only a necessary part of a potentially large list
structure (S-expression) is constructed by a function one
at a time. Hence, for instance, infinite lists, such as
(14916---), can be dealt with as long as only a finite
part is actually used.

However, space overheads for storing delayed S-
expressions, whose evaluation is delayed, are large
because of flags for run time checks on whether the
S-expressions have already been evaluated and of
environments in which the delayed S-expressions are
evaluated later when necessary. The above intrinsic
advantage of the delayed evaluation schemes for
practical list processing operations dealing with finite

*Department of Information Science, Facuity of Science,
University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan.

Present address: Science Institute, IBM Japan, Mori Buiding 21,
4-34, Roppongi 1-chome, Minato-ku, Tokyo 106, Japan.

Journal of Information Processing, Vol. 5, No. 4, 1982

list structures are therefore less effective.

Moreover, run time overheads are usually large
because programs have to be interpreted, requiring run
time checks, and because environments are usually
implemented with deep binding mechanism, in which
accesses to variables tend to be time-consuming. When
a delayed evaluator is written on conventional LISP
systems, instead of being constructed as a special LISP
system, the overheads may well exceed 1000%.

This paper shows that the above overheads of space
and time can be reduced by selectively delayed evaluation
through LISP to LISP translation in advance of execu-
tion: source LISP programs are translated into object
LISP programs so that evaluating some S-expressions in
the object programs may correspond to delaying evalua-
tion of the corresponding S-expressions in the source
programs. The S-expressions whose evaluation is to be
delayed are selected according to delaying strategies of
the translator.

This selectively delayed evaluation generally has the
following advantages:

—The translator can freely (or actively) control whether
or not evaluation of an S-expression in a program should
be delayed, based on delaying strategies and information
gathered at translation time through some analyses,
which would be too time-consuming to be repeated at
run time.

—The translator could use various forms for represent-
ing a delayed S-expression because it can generate object
LISP programs which consistently create and refer to
the delayed S-expression in a specific form. We will
call these forms selectively delayed representation (SD-
representation for short) of the value of the correspond-
ing evaluated S-expressions, for the delayed S-expressions
can be considered to denote the corresponding evaluated

224

S-expressions in a systematic way, with which writers
of the translators are concerned but most LISP users are
not (or should not be).

In this paper, we describe particular delaying strategies
and SD-representations, based on differences between
the roles of car and cdr parts in practical usages. The
car part tends to point to a sub-structure as an element
of a list whereas the cdr part joins the car parts to form
the list. This difference is clearly shown by the existence
of a list notation in LISP and cdr-coding LISP systems,
and by empirical studies on list structures [, 2].

Sequential processing of lists suggests an idea that a
list need not exist as a whole at any time: only its first
few elements will be needed in the near future. This idea
motivates a delaying strategy ‘“‘never delay the evaluation
of the first argument (car part) of coms.”” This strategy
implies the use of the following three SD-representations:
(1) explicit form, in which conventional evaluated
S-expressions represent themselves; (2) intermediate
form, in which evaluation of only the cdr part is delayed;
and (3) implicit form, in which evaluation of the entire
S-expression is delayed. (See Sec. 3 for definitions.)

Through LISP to LISP translation usin gthe three SD-
representations, infinite lists in cdr direction can be dealt
with, and the heap storage space requirement is usually
reduced from the size of the entire list structure to that
of a single element with about 40% run time overheads.
For example, the space requirement was reduced from
0(2") to O(n) with 289, overheads for a program which
generated all the elements of the powerset of a set
containing n elements.

This paper is organized as follows: Sec. 2 explains
overall ideas with a simple example. Sec. 3 describes
three SD-representations and LISP primitives on them.
Sec. 4 describes a LISP to LISP translation. Sec.
5 describes global delaying strategies, which specify
whether or not arguments and result of a function should
be evaluated before being passed among functions.
Sec. 6 shows experimental results on the heap storage
space requirement reduced and run time overheads
incurred by object LISP programs compared with source
LISP programs.

2. Preliminary Explanation with an Example

This section explains, with an example, overall ideas
of this paper.

The following source LISP program is intended to sum
the square of the natural numbers up to and including
100:

sumlist [squarelist [1]; 100]
where
sumlist [x; n}=
[zerop[n]—0;
T- plus[car[x]; sumlist[cdr[x]; subl[#]]]]
squarelist{n] =
cons[times[n; n]; squarelist [addl[~]]]

K. Ono

This program, however, fails in most LISP systems
because the value of squarelist[1] is an infinite list.

On the other hand, the object LISP program, having
names of the corresponding source program suffixed by
an asterisk, can produce the result:

sumlist* [list [function [squarelist*]; 1]; 100]
where
sumlist* [x: impl; n: expl]: expl=
[zerop[n]—0;
T—plus [car [x :=c__impl__interm[x]];
sumlist* [cdr[x]; subl[n]]]]

squarelist* [n: expl]: interm=
cons [times{n; n];
list [function [squarelist*]; addi[»]]]

c__impl__interm[x] =apply [car[x]; cdr[x]]

In this example and the rest of this paper, a LISP

function function should be considered as that of LISP

1.6[7): function is treated like quote by interpreters,

and does not create a funarg (or closure).

Although the object programs could be understood as
usual LISP programs, they had better be considered as
“typed” functions which accept arguments and yield the
result in some form. A PASCAL-like notation is used to
specify the forms of arguments and the result of an
object function, in which expl, interm and impl denote
explicit, intermediate and implicit, respectively.

Remarks on the above object programs follow:

1) An S-expression in implicit form is a list whose
car part is an object function and whose cdr part is an
argument list to the function. For example, an S-
expression (SQUARELIST* n*), where n* is an integer,
represents an infinite list (n** (n*+1)* (n*+2)*---)
containing the squares of integers n* and upwards.

2) An S-expression in implicit form is converted by
c__impl__interm into an equivalent S-expression in
intermediate form, whose car part is explicit and whose
cdr part is implicit: this conversion can be considered
as an incremental evaluation. Using the above example,
we obtain

c__impl__interm [(SQUARELIST* »n*)]
=squarelist*[n*]
=(n**-(SQUARELIST* n* +1)),
where n** and n* +1 are the values of times[n; n] and
addl[n), respectively.

3) No environments are retained in implicit and
intermediate forms. The environments are general enough
to keep values of all the variables whether or not a
specific variable is referred to in future computation. The
translator avoids the environments by creating implicit
S-expressions, in which values of only the necessary
variables are kept in cdr parts of the expressions.

4) No run time checks are necessary by LISP
primitive functions. The translator inserts appropriate
conversion functions, such as ¢__impl__interm, wherever
necessary in object programs.

Selectively Delayed Evaluation through Program Transformation

3. Selectively Delayed (SD) Representations

3.1 Definitions

An S-expression, including an atom, is represented in
any of three forms, which are defined recursively as
follows:

(1) explicit form, in which an S-expression represents
itself;

(2) intermediate form, in which an atom represents
itself, but a non-atomic S-expression represents a non-
atomic S-expression in such a way that the car and the
cdr parts represent the car and the cdr parts in explicit
and implicit forms, respectively;

(3) implicit form, which must be a non-atomic
S-expression whose car part is a function. If an S-expres-
sion e is in implicit form, apply [car[e]; cdr[e]] is an
equivalent S-expression in intermediate form.

3.2 Conversion Functions

An S-expression in one form can be converted into an
equivalent (but not unique) S-expression in another
form. Six conversion functions are shown in the follow-
ing, in which c¢_ forml__form2 reads ‘coerce forml
into form2’:

c__impl__interm[x] =interm{x]
=apply [car[x]; cdr[x]]
c__interm__impl[x] =list [function [identity]; x]
where identity[x]=x

c__expl__interm[x]=
[atom[x]—x;
T—cons[car[x]; ¢__expl__impl[cdr[x]]]1]
c__interm__expl[x]=
[atom[x]—x;
T—cons[car[x]; c__impl__expl[cdr[x]]]]
c__impl__expl[x]
=c__interm__expl [c__impl_interm[x]]
c__expl__impl[x]
=list {function [c__expl__interm]; x]

3.3 LISP Primitive Functions

Generally, LISP primitives can not be applied to S-
expressions in forms other than explicit form. However,
new functions corresponding to a LISP primitive, called
its associated functions, can be defined for each com-
bination of the forms of the arguments and the result.

Associated functions of typical functions are shown in
the following. Not all associated functions are shown, for
the others can be easily obtained by a composition of
those shown and conversion functions. (Functions in
the right hand side of the definitions are LISP functions.)
1. car & cdr

car* [x: interm}: expl=car[x]
cdr* [x: interm): impl=cdr[x]

Note that an error occurs on the same condition in
both sides of the definitions, e.g., when car is applied to

225

an atomic S-expression.
2. cons
cons* [x: expl; y: impl]: interm
=cons [x; y]
3. atom
atom* [x: interm]: expl =atom[x]

Note that a LISP primitive atom is applicable to S-
expressions in not only explicit but also intermediate
form. Note also that values of predicates, such as atom,
null and eq, can be considered as also in intermediate
form since the values are an atomic S-expression, T or
NIL.

4. eq
eq* [x: interm; y: interm): expl
=eq [x;)]

Non-atomic S-expressions can not be compared by
eq unless they are in explicit form.

5. rplaca & rplacd
rplaca* [x: interm; y: expl): interm
=rplaca [x; y]
rplacd* [x: interm; y: impl]: interm
=rplacd {x; y]
6. arithmetic functions and predicates
Arithmetic functions and predicates, both
accepting numeric atoms, yield numeric and
Boolean atoms, respectively. Hence, the form
of their arguments and result may be either
explicit or intermediate.

4. LISP to LISP Translation

This section describes how to translate source LISP
functions into object LISP functions, which are
equivalent to given source functions except for forms of
their arguments and result. Forms of arguments and
result of source functions are always explicit whereas
those of object functions are any of the three forms
selected at translation time. We assume, in the following,
that forms of arguments and result of object functions
are selected by global delaying strategies described in
Sec. 5.

Once these forms are given for an object function
which is now to be generated and other functions which
are called from this object function, the translation is a
process of generating object expressions whose values
are in a form consistent with object functions used. In
particular, function applications are translated in such
a way that their argument parts are in forms required by
object functions in their function parts.

Consider object functions of append, as an example.

append[x; y]=
[null[x]-y;
T—cons[car[x]; append[cdr[x]; ¥]}]
When both arguments of an object function are to be in
implicit and the result are to be in intermediate form,
the following object function append* will be generated:
append*[x: impl; y: impl]: interm =
[null[x :=c__impl__interm[x]]—»

226

c_ impl__interm[y];
T —cons[car[x];

list[function [append*]; cdr[x]; ¥]]]
Note that LISP primitives null and cons are supplied
with arguments in the required forms. An argument of
null (i.e., x) is converted into intermediate form; the
first and the second arguments of cons are in explicit and
implicit forms, respectively, so that the value of cons,
which is also the value of the entire conditional expres-
sion, is in intermediate form. Note also that a value of an
object expression

list[function[append*]; cdr[x]; y]
is a valid S-expression (APPEND* cdr[x] y) in implicit
form because cdr[x] and y are both in implicit form as
required by append*.

The translation will be described in terms of a
translator function trans [expr; form], whose first argu-
ment expr is a source expression to be translated, and
whose second argument form is the required form of a
value of the resultant object expression. In the following,
we assume that the forms of values referred to by occur-
rences of variables are maintained through a symbol
table. The forms of variables are known at the entry to
an object function, and are changed by internal lambda
and prog binding or assignments.
trans[expr; form] =

Case 1 atom[expr]

object: (convert expr)
or (SETQ expr (convert expr))
where convert is a conversion function from the
form of the current value of expr to form.
When the value of expr is “evaluated” in
effect by convert, such as c¢__impl__interm, the
converted value is assigned to expr so as to avoid
reconversion.

Case 2 Constant (Quoted) expression

object: expr in form, i.e., the result of a con-
version function from EXPLICIT to

Jform applied to expr

trans[(QUOTE expr); form)
=(QUOTE c__expl__form[expr])
Case 3 Conditional expression

object: (COND (trans[p,; bool] trans[e, ; form])
(trans[p, ; bool] transle, ; form])

(trans[p,; bool] transle, ; form]))
where expr=(COND (p,e,)(p.€,)
cee (pnen))
and bool is either EXPL or INTERM.

Because, in LISP, any value other than NIL
is considered true as a Boolean value and because
we can determine whether or not a value is NIL
when the value is in either intermediate or explicit
form, the predicate p,s are translated into either
intermediate or explicit form, whichever is con-
venient for unnecessary conversions to be
eliminated.

Case 4 primitive function application

K. Ono

object: (fn__assoc transle,; r,] transle,; r,];
transfe,; r,])
where expr=(fn e, e, - -e,);
Jn__assoc is an associated function of fn;
and r; (i=1, 2,- - -, n) is the required
form of the i-th argument of fi__assoc.
The associated function fi__assoc and r; are
determined based on, among other things, the
result form form and a natural form of the argu-
ments e; in such a way that redundant conversions
are eliminated. Here, the natural form of an
expression means explicit form for constant
expressions, the form of the current value of a
variable for the variable, and so on.
Case 5 non-primitive function application
expr=(fne, e; " e,)
In the following, an object function fn* of
Jn is assumed to accept its arguments e, in r; form
and yield the result in result form. Note that if
and only it result is INTERMEDIATE, fn* can
appear in the car part of S-expressions in
implicit form.
object:
case result =INTERMEDIATE
i) form=EXPLICIT
(C_INTERM_EXPL
(fn* transfe,; r{]
transfe,; 7,]

transe,; r,]))
ii) form=INTERMEDIATE
(fn* transfe,; ry}
trans[e,; ;]

transle,; r,])
iii) form=IMPLICIT
(LIST (FUNCTION fn*)
transfe,; rq]
transfe,; r,]

trans(e,; r,])
case result =EXPLICIT or IMPLICIT
(convert (fn* transfe, ; r,]
transfe,; r,)

transe,; r,),
where convert is a conversion function
from result to form
Case 6 Internal lambda
object: ((LAMBDA (x, x;" " "x,)
trans[body; form})
transle, ; r,]
transfe,; r,]

transe,; r,]),

where expr=((LAMBDA (x, x,- - -x,) body)
el e2 o .en),

and r; is the natural form of e;.

Selectively Delaved Evaluation through Program Transformation

At the beginning of the translation of body
of the lambda expression, forms of lambda vari-
ables x; are initialized to r;, respectively.

Case 7 Program features prog, go and return

We found the following strategy effective for
translating expressions inside most of prog
expressions: ‘‘S-expressions in explicit form
should never be converted into intermediate or
implicit form.”

5. Global Delaying Strategies

This section describes global delaying strategies
according to which programmers select forms of argu-
ments and result of object functions.

1. Arguments should be passed in implicit form and
result should be delivered in intermediate form unless
otherwise stated.

This strategy assumes that implicit forms are more
concise than corresponding explicit forms, and allows
potentially larger list structures (including infinite lists
in cdr direction) to be constructed element by element.

2. Some arguments should be in explicit form if side
effects inhibit re-evaluation or re-ordering of evalua-
tion caused by delayed evaluation.

3. So as to avoid excessive conversions from implicit
to explicit form, some arguments may be preferred to
be in explicit form at the expense of the heap storage
space (but no more space than in conventional LISP
systems).

union [x; y]=
[null [x]-y;
member [car[x]; y]—union[cdr[x]; y];
T—cons [car[x]; union [cdr[x]; y]]]

In the above example, if enough space is available for
accommodating the value of the second argument y
in explicit form, the y is preferred in explicit form to
avoid repeated conversions from implicit to explicit
form inside the function member.
4. Results of object functions are preferred to be in
explicit form if the results, which are assumed to be
lists, are constructed from their tail to head.

For example, consider the function reverse defined as
follows:

reverse [x] =prog [[v]
Loop [null[x]—return[v]];
v :=cons [car[x]; v];
x :=cdr[x]; go[Loop]]

Note that a value of the variable v, whose value is
returned as the value of reverse, is constructed by
v :=cons [car[x]; v],

which adds car[x], as a new head element, to the exist-
ing list referred to by v. Hence, we can not know, until
exit from reverse, what is the car of the value of reverse.
Compare this with the definition of append[x; y} in Sec.
4, from which it is clear that the car of the value of

227

append|[x; y] is either car[x] or car[y].
5. To use several object functions derived from a
single source function is sometimes advantageous in
order to avoid redundant conversions.

These functions differ from each other just in the forms
of their arguments and result. The source function,
defined by users, accepts arguments and yields the
result in explicit form; hence, the source function itself
can also be considered as a special object function. In
particular, some combination of source and object func-
tions can eliminate frequent conversions between values
in explicit and implicit forms when recursion occurs also
in car direction like the following equal:

equallx; y]=
[atom[x]>eqlx; y];

atom[y]—-NIL;

equal[car[x]; car[y]]—equal[cdr[x]; cdr[y]];

T-NIL]
The third predicate equal [car[x]; car[y]] would be left
unchanged in equal* because car[x] and car[y} are in
explicit form when control reaches this predicate.

6. Results

This section describes how much the heap storage
space requirement is reduced and how much run time
overhead is incurred by our LISP to LISP translation.
The heap storage space requirement was analysed by
hand whereas run time overhead was measured by com-
paring execution times of source and object programs on
a conventional LISP system.

6.1 Append

Two object functions of append
append¥[x: expl; y: expl]: interm
and append3[x: impl; y: impl]: interm
are considered.

6.1.1. Heap Storage Space Requirement

Provided that x and y refer to lists containing n
elements of size m and n’ elements of size m’, respectively,
the orders of the heap storage space requirements are
as follows:

append: mm+n'm’ +n

appendf: mm+n'm' +3

append%: (Ximp) +<Vimpry +3 +max[m; m’],
where (Xipnp1> and (y;,,> denote the size of x and y
in implicit form, respectively. Note that {x;,,,,> is usually
of the order of the size m of an element of x and in-
dependent of the length n of x in explicit form.

For programs processing lists sequentially, the heap
storage space requirement is reduced from O(nm) to
O(m) by using append%, where n is the length of a list
and m is the size of a typical element of the list.

6.1.2 Run Time Overheads
Run time overheads of append* should be compared

228

not with an execution time of append but with the total
execution time T, for processing lists:

T!olal = Tgen + Tcons + Tn

+ Tselec(+ Tproc’

where T, for generating elements before constructing
lists,

ppend

T.ss for constructing lists,
T,ppena fOT concatenating two lists,
T, \cc: for selecting each element in turn,
and T,,,. for processing the elements.
We separate T, into two groups:
T:omp = Tgen + Tproc
and Tconcat = Tcons + T‘append + R:lect‘
The first group T, is independent of which function
is used for append, whereas T ., is independent of how
elements are first generated and processed later, for the
car part of S-expressions in intermediate form is in
explicit form and can be directly generated and processed
by user defined source functions. Hence, the ratio of
run time overheads is:

(T;mca(- Tconcal)/(Tcomp + Tconcnt)
=(Rconca| - 1)/(1 + Tcomp/Tconclt)’

where R.oneat =T % ncat/ Teoncats Which depends only on
which function is used for append.

The time T, is shown for two extreme cases with
the length of two arguments of append varied. In the
following, n and m denote the length of the first and the
second arguments of append, respectively:

Case (n m)=(900 100)

append append? append}
Teons 138 138 0
T, ppena 157 313 345
Tselecl 67 67 333
Tooncat 362 518 678
R, oneat 1.00 1.43 1.87

Case (n m)=(100 900)

append append¥ append}
Teons 140 140 0
Toppena 18 299 65
Toetect 69 69 324
Teoncat 227 508 389
R ncat 1.00 2.23 1.71

(The unit of time is intentionally left unspecified, for only
the ratio is significant.)

This result shows that append* can be used with at
most 90% overhead: this ratio will be reduced for
practical programs because complicated processing of
elements makes T, large compared with Tyocaq-

6.2 Polynomial Manipulation

Polynomial manipulation programs use list processing
operations, representing polynomials as lists of terms
ordered in some way, say from terms having the highest
power to the lowest. Addition of two polynomials is
essentially a merge operation on two lists, which com-

K. Ono

pare the first terms of the two lists, choosing the *‘higher”
term or producing a single term from the two terms with
the same power. A polynomial multiplication function
mult _poly2 may be defined as follows:
mult__poly2[x; y]=
[nullfx]—>NIL;
T—add__poly2[mult__term__poly[car{x]; y];
mult__poly2fcdr{x]; y] 1],

where mult__term__poly multiplies a term and a poly-
nomial.

Suppose that polyl and poly2 have n and m terms,
respectively, and their product has O(rn +m) terms. When
polyl and poly2 are multiplied by mult __poly2, the heap
storage space requirement is O(tnm), where ¢ is the size
of a term, for a value of mult__term__poly requires
O(tm) cells, and there exist n values of mult__term__poly
when add__poly?2 is first entered.

On the other hand, the following object functions
require only O(t(n+m)) cells:

mult__poly2* [x: expl; y: expl]: expl

mult _term__poly* [x: expl; y: expl}: interm

add__poly2* [x: impl; y: impl]: interm
The reasons are: the n terms (one for each a values of
mult__term__poly*) are generated at one time, and the
rest of the terms are generated when requested by add _
poly2*. This requires O(tn) cells. The result of
add__poly2* is accumulated, requiring O(t(n +m)) cells.

Run time overhead was measured and analysed as in

the case of append and was about 349, when the simplest
representation of a term was used: a pair of an integer
coefficient and an integer power.

6.3 Powerset Generation

The heap storage space requirement is reduced from
O(2" to O(n) for the program, shown in Appendix A,
which generates all the elements of the powerset of a
given set containing n elements.

The heap storage space requirement for the source
program is O(2") because the value of a powerset[x] is a
list containing all the sub-sets of a set indicated by x
and the number of the sub-sets is 2" for the set of size n.

On the other hand, the heap storage space requirement
for the object program is O(n). A proof can be obtained
by considering the successive values of cdr[v] at the
point labeled by Next inside the loop. These values con-
sist of (n+ 1) substructures, which are in either I or P
type shown in Fig. 1. We can represent a sub-structure
as a box which is in either I or P state and has I- and
O-ports to form a sequence of boxes. Initially, all (n+1)
boxes are in I state, requiring a total of 7n+2 cells (see
Fig. 2 for the case n=3). Each time control reaches
Next, the boxes change their state either from P to I
or from I to P, reflecting the change of the value of
cdrlv] caused by c¢__impl _interm. In the change of their
states, boxes as a whole behave like a binary counter,
in which states I and P correspond to 0 and 1, respec-

Selectively Delaved Evaluation through Program Transformation

[-port —| el = O-port
n
N
I-port —|
M TR T PR TP
; L.
N POWERSET2* e O-port
l-port —| NIL,
I-port —| :}~—» Z
v
IDENTITY NIL
@
I-port — ep s O.port
0
?

o [T}~ 1 3L
i \i L&] O-port

POWERSET?* e
®

Fig. 1 Sub-structure and Box. (a) I-type sub-structure and I-
state box. (b) P-type sub-structure and P-state box.

[Ay B (1:1 NIL,
(A) (B) ©
NIL
Fig. 2 Initial State of a Sequence of Boxes.

tively, and a transition from P to I generates a “carry”
propagating from the left to the right in Fig. 2. During
each change of a state of a box, cells are allocated or
released, and cells representing car[v] are released.
Considering the sequence of boxes as a binary counter,
we can prove by mathematical induction that the number
of cells representing successive values of cdr[v] does not
exceed that of the initial value. Thus, the value of v can
always be represented with at most 8n+3 cells: at most
n cells for car[v] and another cell for connecting car[v]
and cdr[v].

Run time overhead was 28%, when execution time of
print [car[x]] was disregarded. This ratio will be
decreased when each sub-set is processed after being
generated because this processing of the sub-sets, which
are already in explicit form, does increase the total
processing time but never increase the run time over-
heads.

7. Concluding Remarks

A selectively delayed evaluation through program

229

transformation was described with examples from LISP:
source LISP programs are modified in advance of execu-
tion so that evaluating an S-expression in the resulting
object LISP programs corresponds, in effect, to delaying
the evaluation of the corresponding S-expression in the
source programs. The object LISP programs are directly
executable in any conventional LISP system, and may
further be compiled into machine codes, in contrast to
delayed evaluation schemes (3,5}, in which LISP
programs are usually interpreted by a delayed evaluator.

Three forms for representing (delayed) S-expressions
are introduced as selectively delayed (SD) representations
of ‘“evaluated” values of the delayed S-expressions.
These forms are concise: they contain neither environ-
ments for later evaluation nor flags for the run time
checks. A translator can deal with them like data types
(i.e., the form of an expression can be determined at
translation time).

This selectively delayed evaluation can reduce run time
overheads, of space and time, of the delayed evaluation
schemes. Therefore, some advantages of delayed evalua-
tion schemes, though well recognized in theory but
seldom used in practice because of the overheads, can
now be enjoyed by practical programs. In particular,
infinite lists in cdr direction can be dealt with, and the
heap storage space requirement is usually reduced with
an increase of only about 409 in run time overhead
(instead of more than 10009 in the case of conventional
delayed evaluators). These programs include a poly-
nomial multiplication program. As another example, the
space requirement was reduced from O(2") to O(n) with
an increase of only about 289 in run time overhead for
a program which generated all the elements of the
powerset of a given set containing n elements.

A particular advantage of the selectively delayed
evaluation is that delaying evaluation can be confined
to only a few functions which are crucial to the reduction
of the heap storage space requirement, while the other
functions are evaluated as usual. Moreover, functions
whose evaluation can not be delayed for some reasons,
such as side effects, can coexist with other functions
whose evaluation can be delayed safely and advan-
tageously.

Global delaying strategies described in Sec. 5 are
heuristic and do not always choose the best forms of
arguments and result of object functions. Hence, our
translator is currently supported by programmers
through declarations, which inform the translator of the
forms. More systematic strategies are needed.

Finally, it is worthwhile to note that the selectively
delayed evaluation scheme is a general framework, in
which various delaying strategies and SD-representations
could be used depending on various requirements and
language systems in which object programs are to run.
In this paper, we described a particular delaying strategy
“never delay the evaluation of the first argument (car
part) of cons” for LISP and the corresponding three
SD-representations. Although this strategy was found

230

to be effective in conventional LISP systems for most
programs, it can not deal with list structures with a car
part of infinite sub-structure since it suggests intermediate
form with the car part always being evaluated.

In order to deal with such lists, two approaches will
be promising. The first approach is to devise new SD-
representations (i.e., a special intermediate form and an
implicit form) for each function resulting in infinite lists
in both car and cdr directions. For example, for the
following program resulting in an infinite binary tree
with each node having a value:

binary __tree[n] =
cons[n; cons [binary__tree[times[2; n]];
binary__tree[addl[times[2; #]]]]]

we would use a special intermediate form, interm__eii,
in which the car, cadr and cddr parts are explicit,
implicit__eii and implicit__eii, respectively, where
implicit__eii is an implicit form resulting in an S-
expression in interm__eii when c__impl__interm is
applied to. An S-expression (BINARY__TREE*n*),
where n* is an integer, is in implicit__eii form provided
that the following object function binary _tree* is
defined:

binary__tree*[n: expl}: interm__eii =
cons[n; cons [list [function [binary__tree*];
times [2; n] |;
list [function [binary-tree*];
addl [times [2; 1]]]]]

Once the special forms are devised, it will be easy to
generate object functions dealing with this binary tree.
It will be a challenging future study to write a program
which devises special forms for a given set of functions.

The second approach is to abandon temporarily the
strategy that the car part should always be evaluated,
and to use run time checks, instead, for functions dealing
with such lists. In other words, these functions are
translated into object functions in which some occur-
rences of primitive LISP functions, such as car and
cdr, are preceded by some codes for run time checks on
whether or not an S-expression is in a delayed form. Note
that overheads incurred by the run time checks can be
minimized because the primitive functions requiring run
time checks are confined in these functions. Further-
more, analyses at translation time could eliminate run
time checks required by some occurrences of the primi-
tive functions even within these functions.

Acknowledgments

Thanks are due to Professor Eiichi Goto for his
encouragement and critical comments on earlier drafts
of this paper, which led ultimately to a clearer presenta-
tion. Thanks are also due to Mr. Masayuki Suzuki for
his critical readings of this paper.

References
1. CrLArk, D. W. and Green, C. C. An Empirical Study of List

K. Ono

Structure in Lisp. Comm. ACM 20, 2 (Feb. 1977), 78-87.

2. CLARK, D. W. Measurements of Dynamic List Structure Use in
Lisp. IEEE Trans. Software Engineering, Vol. SE-5, no. 1 (January
1979), 51-59.

3. FriepmAN, D. P. and Wisg, D. S. CONS should not evaluate
its arguments. In Automata, Languages and Programming, S.
Michaelson and R. Milner, Eds. Edinburgh, Scotland: Edinburgh
Univ. Press (1976), 257-284.

4. FrIEDMAN, D. P. and Wisg, D. S. Aspects of Applicative
Programming for Parallel Processing. IEEE Trans. Computers,
Vol. C-27, no. 4 (April 1978), 289-296.

5. HEenDERSON, P. and MoRrRis, J., Jr. A lazy evaluator. In Proc.
3rd ACM Symp. Principles of Programming Languages (1976), 95~
103.

6. HENDERSON, P. Functional Programming Applications and
Implementation. Englewood Cliff, New Jersey : Prentice-Hall (1980).
7. Quawm, L. H. and Dirrie, W. Stanford LISP 1.6 Manual. Stan-
ford, California: Stanford Artificial Intelligence Laboratory,
Operating Note No. 28. 7 (1972).

Appendix A

Powerset Generation Program
source program:
printsubset[x] =prog[[v]
v :=powerset[x];
Loop
[null[v}>return[NIL]];
print[car[v]];
v :=cdr|v]; go[Loop]]
where
powerset[x] =
[null[x]—>cons[NIL; NIL];
T—powerset2[car[x]; powerset[cdr[x]]]]
powerset2[e; pset]=
[nullf pset]—>NIL;
T—cons[car[pset];
cons[cons[e; car|pset]];
powerset2[e; cdr[pser]1]1]1]
object program:
printsubset*[x: expl]: expl=prog] [v]
v :=list[function[powerset*]; x];
Loop
[nulllv :=c__impl__interm[v]] return[NIL} };
Next /* This label is referred to in the text */
print[car[v]];
v :=cdr[v]; go[Loop]]
where
powerset*[x: expl]: interm=
[null[x]—cons[NIL; (IDENTITY NIL)J;
T- powerset2*[car[x];
list[function[powerset*];
cdr{x]1]1]
powerset2*[e: expl; pset: impl]: interm =
[null pset : =c__impl__interm|pset}]—-NIL;
T—cons[car| pset];
c__interm__impl[cons[cons[e; car[pset]];
list[function[powerset2*];

e; cdrpset] 11111
¢_ impl__interm[x]=apply[car[x]; cdr[x]]
c__interm__impl[x] =list[function[identity]; x]
identity[x] =x

(Received April 27, 1971: revised June 3, 1972)

