Minimizing Page Fetches for Permuting
Information in Two-Level Storage™

Part 1. Generalization of the Floyd Model
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The Floyd model on permuting information in two-level storage is generalized in such a way that the fast
memory is large enough to allow reading in w pages (w=2). Properties of the generalized e-function are discussed.
In the second half of this paper the lower bounds of the number of page fetches are analyzed for the case of an

arbitrary permutation.

1. Introduction

In case a large amount of data needs to be processed,
the performance of algorithms hinges on the number
of page transfers between the fast main memory and the
slow but much larger memory, such as magnetic disks.
Instructive results in this area are due to Floyd [1]. He
assumed that the fast memory is large enough to allow
fetching two pages, and discussed the problem of reading
in two pages from the slow memory, permuting the re-
cords between the pages and then reading out those pages
with shuffled records. This process is continued until the
desired permutation of records is realized in the slow
memory. He established the lower bound on the number
of page transfers with which all the records in the slow
memory can be redistributed among pages.

In this note we generalize the Floyd model in such a
way that Floyd’s assumption can be replaced by a more
general one that the fast memory is large enough to
allow reading in w pages (w=2). To make the model
more realistic, an extra page of work space is provided
in main memory; in this workspace a new page is
constructed from those records in the resident w pages,
and it is subsequently read out to the corresponding
slow memory locations. Thus the model of this note can
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Fig. 1 The generalized Floyd Model.
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be shown schematically as in Fig. 1.

This generalization may be useful when constructing
algorithms for processing a very large amount of data
over hierarchical memories with minimal ‘use times’,
rather than CPU times, because the arbitrarily given
integer parameter w may approximately represent the
finite size of main memory available for data. Practical
applications in this direction have been discussed else-
where [2], where detailed algorithmic procedures are
compared against the theoretical limits.

2. Definition of Operations

To consider distributing records among pages, suppose
that without loss of generality there are p’ pages in slow
memory, each page containing p records. Appropriately
selecting w pages out of those p’ pages, these are trans-
ferred to the main memory. We call this a w-page trans-
fer. As a subset of the union of those w pages, a new
page of p (or less) records is formed in the work space,
and then it is read out to the slow memory. This process
is repeated w times, so that the new w pages occupy the
locations of the old w pages in slow memory. With the
shuffling process inclusive, the w-page transfer is defined
to be w ‘operations’. The problem is to find the lower
bound to the number of page transfers or operations
required of redistributing all the records of p’ pages to
realize the prescribed desirous distribution. Normally,
the page-transfer time exceeds the typical CPU time by
orders of magnitude, so that even in practical applica-
tions the number of page transfers can be a good
complexity measure.

3. V-function and e-function
The V-function is defined as follows.

V=V(AB)=Y ¥ e(X(i.))) )

where X(i, j) is the number of records that are transmitted
from the i page of the initial distribution of records,
A, to the j* page of the final distribution of records, B
(,j=1,2, ---, p'). The e-function in the above is defined
as
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(W + 1) =kw*+ (k+ ;‘:—l)l @
where
k=0,1,2,---, 3)
0 i<(w—1wk 4)
and
e(0)A0. )
Obviously,
e(1)=0, (6)
e(ny=nlog, n (if nis a power of w). ™)

The following holds.
Lemma 1. Given X, (t1=1, 2, - - -, w) such that

X,=wh+l, t))
where
k,=0,1,2, -, ©
and
0/, <(w—Dw*, (10)
then
o £ x)s 3 texo+xa. an
t=1 t=
Proof. Without loss of generality, we can assume
X,2X,2---2X, (12)

whe< X, <whk*1 by (8), so that if X, <X, (t'#1"), then
k,. Zk,.. It follows therefore from (12) that

kyzkyz--- 2k, (13)
Moreover,
2 {eX)+ X} =Y (k+Dwh+ Y <k,+1+L>l,‘
t=1 t=1 t=1 w—1
(14)

Proof proceeds by dividing into two cases.
Case A: Y X, zwhi*l
t

Since w1 <Y X, <w*1*2 we have
t
e(z X,)=€(Wk‘+l+(2 X,—Wk'+l))
t t

= okt <k1+1+;v—’f—1)(}2 (whe+1,).

w—1
as)
It follows from (14) and (15) that
A AY {e(X)+ X} —e(} X))
T t

=—w—w"‘“—2 (kl—k,+ —‘i— whe— ¥ (ky— kI,
1 n w—1 n

W—
Using the relation
Y (k= kL LY (ky—k)(w—Dwh
t 14
(where equality holds for k, =k,=---=k,), we have
Tt = B (= Dk, ~ )+ Wk, (16)
t

It is not difficult to show that
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w'Z(w—1)v+1 (17)

(where v=0, 1, 2, - - -; equality holds for v=0,1). An
application of this inequality gives w*: % >(w—1)x
(k,—k,)+1, so that

wh 2 (w— 1)k, —k)+ Dw*, (18)
the equality being either for k, =k, or k, =k, +1. It
follows from (16) and (18) that

ALz w—f—l<w‘““— X w"‘) =0,

which means

oY X)X (e(X)+ X)),

where equality is for k, =k,=--- =k
Case B: Y X, <whi*!,
t

e} X)=e(w* + (X X,—w"))

we

= — w ki _w_ ke
=—oTqw +<k1+w_])2w

w O
+ (kl + m)%_ ..
This, together with (14), yields
Axéz {B(X,)-FX,}—B(Z Xr)

Y ok 1 w ke
i Z(kl k, 1+-——-w_l>w
=Y (ky—k,~ D),

t

In inequality (13), we consider the first subscript / such
that
ky=ky=---=k;>k;y 2k 2 -2k,  (19)
Note that in the absence of such an i the case is that
ky=k,=---=k,, which reduces to Case A, because
Z X,z whitl
t

holds. Therefore,
I A
iy LA L g
-y (k,—k,—1+——w_—1 whe

t=it+1 w

- ¥ k=D,

t=i+1
Noting that

i

Y 1,20
=1
(where equality is for /, =/, =--- =1/;=0) and that
Y =k DL Y (k,—k,—D(w—Dwk
t=i+1 t=it+1
(where equality holds for k., =k,,, =" =k,=k,—1),
we have
1
>
Bp2 o
x [(w—f)w*'— {w—1)k,—k,~ 1)+ l}w"'“].
=it+1

(20)
Again, using (17), we have
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W2 {(w— 1)y —k,— 1)+ Lwh* 1,
which, when combined with (20), results in

l w
Ag> m[(w—i)w“— b w"‘] =0.

t=i+1
Namely, we have arrived at:

e(i x,) s 3 e+ X,

where the equality sign holds for the case that k, =k, =
ce=ki=kj 1=k, +1="-=k,+1 and /==
(Q.E.D)

4. Lower Bound of the Number of Page Transfers

The following theorem follows from the preceding
lemma.
Theorem 1. Selecting w pages from the set of p’ pages
in the slow memory (where each page contains p records),
we permute the records on main memory. The new w
pages thus obtained then replace the old w pages in the
slow memory. By repeating this process each with a
w-page transfer, we want to realize a final distribution
of records, B, among the p’ pages of slow memory.
In this process a change of distribution from A to A4’
resulting from one w-page transfer corresponds to a
change of the V-function such that

V(4'|B)—V(A|B)< wp; @1

in other words, the increase of ¥ due to a one-page
transfer (i.e. an operation) is at most p.

Proof. Let all the p’ pages in slow memory be identified
by integers 1, 2, - - -, p’. Also let those w pages selected
bereferred toby iy, iy, - - *, i,,; therefore, {i;, i,, - - -, i,} =
{1,2, ---, p'}. In the i page of the w pages selected,
we denote the set of records that should be in the j*
page of the final distribution B by X(i, ) (i=i,, iy, ***,
iy;j=1,2, -+, p). For example, X(i;, 1) indicates the
set of those records of page i, now in main memory
that should have been transferred to page 1 when the
final distribution B is established. For simplicity we
understand that X(i,j) also denotes the number of the
records that make the set X(j, j) depending on the context
of discussions. We move the records between the w
pages fetched by a w-page transfer in such a way that
those records with a common destination page get
together in some of the new w pages. The new w pages
are then pushed to slow memory. More exactly, we
need at least one page for work space, in which a new
page is formed and then copied back in slow memory
by a one-page transfer. This process is repeated w times,
while the w pages in main memory remain intact. Thus
the change of distribution from 4 to A’ by a w-page
transfer (or w operations) causes the change of V-func-
tion such that

M=

V(4'|B)— V(A4|B)=

e( i XG,, j)) - f‘, i e«(X(,, /)
1 r=1 j=1r=1

Y XGnJ)s
1r=1

i
=

\"M‘
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where the previously-shown lemma has been used.
The number of records to be transmitted to the p’ pages
of the final distribution from an arbitrarily selected
set of w pages is wp, so that the above equation
gives

V(A'|B)— V(A|B)S wp. @r)
Next, consider pages i; and i, of the w pages. Writing
a and b instead of X(i,,j) and X(i,, j) for short, respec-
tively, we can easily show that

e(a+b)ze(a+b—1)+e(l)Ze(a+b—2)+e(2)2

) w

This endorses the fact (already used in the present proof)
that in order to increase the e-function maximally it
suffices to have those records with a common destina-
tion page get together in the same page while forming
a new set of w pages by inter-page shuffling. If, therefore,
the change of distribution from A to A4’ is realized by
whatever inter-page shuffling, inequality (21') holds. [
The following corollary is the direct consequence
of the above theorem.
Corollary 1. There are p’ pages in slow memory each
of which contains p records. The problem is to redistrib-
ute the records among p' pages without loss of any
information. The distribution of records can be rep-
resented by a p’ xp’ matrix. The lower bound of the
number of one-page transfers to have the final distribu-
tion B from the initial distribution A is given by

[V(B|B)~ V(AIB))p. O
As an example, let 4 be a pxp matrix where p is

some power of w, with each row per page, and B its
transposed form. Then,

V(B|B)=Y, 2;. e(X(i, ) =Y e(X(i, i))=p e(p)=p” log,, p,
V(AIB)=Z", ; e(1)=0,

so that the lower bound for a matrix transposition is

plog, p. )
Remark. It can be demonstrated that Eq. (22) is
generalized as follows:

o3 %)z £ cn, (3

where X, and w are those notations defined in Lemma 1.
Lemma 2. For a fixed value of x>0, let the following
function of y be defined:

£0)axlog, (x=3)+ 570 @4

where

w
<y
0=y<w_1x. (25)
It then follows that
w~—1 w w—1
f)sx logw( x) r(1- )x @6)

wlog w wlogw

where f,(y) assumes the maximum value shown on the
right side of (26) at
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w—1
y=<l—-ﬁ6g—v-v)x. 27
If w22,0<¢;251(=1,2,---,n)and
l—zl 7= 1’
then the following inequality holds:
L 4ilog, 4,0,

where Olog, 040 and equality holds when g,=6, ,
(i=1,2, -+, n; i, is one of these n integers). O
Denoting X; in place of X(i, /), one has

Lemma 3.

0§1,,<-‘”7v—lx,,, (28)
hence (25), since by definition the argument of the
e-function is subject to relations

X =w+l,,

ky;=0,1,2, .-,

0l <(w— 1w,

Theorem 2. Let p’>p, w=2 and the following function
be defined:

J 2
e x X {XU log, (X~ I+ 1,,}, 9
where
P’ P
Z X= 2 Xij=p, (30)
i=1 j=1
w
0§Iu<—'__qu~ (28)

It then follows that

-1
osvnspp(ion 2o 1) G

where the right equality holds when

L= (1 %‘,)X, ; @7
and the p’ x p’ matrix, (X;;), is either
p
P 0
0
p

or that matrix given by an arbitrary permutation of the
columns of this diagonal matrix.
Proof.

0=V(X) (obvious)
£ & s, (Sam)
*r(‘ - Tozw) %)
. P é‘,l ;’1 log,, ‘%‘+ (logw f:—”l’o_g—li+w—il-)
X :Z i Xi;

p,pi p(w 9) +_W_)_

ewlogw w—1

T S

(by lemma 2)

M“‘

-
L]

-
[

(by lemma 3) O

Table 1. Values of function &(w)
w o(w)
2 0.086
5 0.194
10 0.269
30 0.371
50 0.411
100 0.459
<] 1
Writing
pw—1)
log,, ewlog w + Alogw p+6(w),

one then has

w1 »
ewlogw w-1’

d(w)=log,, €2))
a monotonously increasing function of w, as shown in
Table 1. The function 6(w) does not exceed unity for any
finite value of w.

Corollary 2. Given an initial and final distributions

of records, 4 and B, respectively, the following holds:
[V(B|B)— V(AIB)]/pé[N{?x X, aj)—l‘/fiﬂ V(X lip
J

=p'[log,, p+(w)]; (32)

namely, the supremum of the lower bounds to the
number of page fetches, required of realizing an arbi-
trarily given permutation of records, does not exceed
the value given by the right-hand side of (32). In rare
cases (see theorem 2) the equality in the middle of (32)
holds approximately.* O
Remark. The supremum value of lower bounds given
in corollary 2 is that number of page fetches which
should hopefully be attained by some near best possible
algorithm.
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