LISP Programming Using Ellipsis Notation

AKIRA FusaokA* and HirosHI FujsiTa*

This paper presents a method and system which introduces an ellipsis notation into LISP programming and
computation by using a formula extrapolator. In this system, a function factorial[n] for example, can be defined as

factorial[n)=1%2+3%_ . *n
and also the data object can be represented as
1#2¢3+. . 100

Not only the specification but also the evaluation process of an expression is simplified by extrapolating the
general stage of evaluation instead of the actual execution of annoying iteration. An algorithm of a formula

extrapolator is sketched in a later section.

1. Introduction

This paper presents a method and system which
introduces an ellipsis notation into LISP programming
and computation. In ordinary mathematical usage, we
give terms of a sequence to define an expression, count-
ing on the inferencial ability of the reader to determine
what the actual expression is. For instance, we might
define a function factorial [n] as

factorial [n]=1%2%3% .. .*n
and also represent the value factorial [100] as
1%2%3%. . . 100

This ellipsis notation** for a sequence can be used as a
simple and useful means for abstracting the iterated
structure of a program and computation, that is, it often
allows the elimination of the need for iterating loops,
recursion and induction from the specification, execution
and verification of the program.

The program in the sequence form will be more
readable and easier to write than the corresponding
LISP expression. The following examples illustrate the
specification method of program in the ellipsis notation
for the sequence.

Example 1. reverse function

A common representation of the reverse function is

reverse[x]=[null[x]->NIL;

T— append[reverse[cdr[x]), list[car[x]]]]

By using the sequence, however, the same function
is represented as follows.

reverse[(xy x5.. . x))=(XXp-1...X1)

By virtue of this style of definition, the verification of
properties is also simplified. For instance, the following
relation of reverse can be proved via only symbolic
evaluation without using any more elaborate techniques
[2].

reverselreverse[(x, x,. . .x,)]

=reverse[(x,x,_...x,)]
=(xy X3...X,)

*Central Research Laboratory Mitsubishi Electric Corporation,
Amagasaki, Hyogo 661, Japan.

**Turner uses similar notation *“. .” representing integer interval

in his KRC system [10], however, the ellipsis *“. . .” may implicate
more information than it.

Journal of Information Processing, Vol. 6, No. 2, 1983

Example 2. filtering

The process of enumerative iteration can be also
abstracted by using u-operator and the sequence. For
example,

integer-squareroot[x]=(uy(1 2. . .x)

+D*x(y+1)>x)

where (py(s, s,...s,) P[y]) means the first s; which
satisfies P[s;]; if no such s, exists, the value of the form
is taken as NIL. For instance,

integer-squareroot[10] =(uy(12 ... 10)

(y+D*(y+1)>10)
and,
(1+D*(1+1)=4<10 for y=1,
Q+1D)*2+1)=9<10 for y=2,
B+D)*x(3+1)=16>10 for y=3,

so we get

integer-squareroot[10]=3

In addition to program writing, a sequence form is
also useful to represent a data object. For instance, a
sequence

(123 ...100)
can be used for the representation of a list of which each
element is a consecutive number from 1 to 100. This
elliptical form of a data object is not only more readable
but also easier to compute by avoiding the evaluation of
annoying iteration whenever the result can be inferred
from the sample computations. This extension is practi-
cally important because it leads to a different form of
partial evaluation.

Consider the next function foo defined as follows,

fooln, m]=[greaterp[n, ml—();

T—(n !fooln+1, m))]

(We use a strip operator “!” which is evaluated im-
mediately whenever its argument is a list.)
Then, the value foo[l, 100] would be evaluated by
repeating the following steps 100 times.

foo[1, 100]=(1 ! foo[2, 100])

=(1 2 !fo0[3, 100])
=-and so on.

However, a clever evaluator which contains the ability
to extrapolate the general term of a sequence from the
given sample terms might become aware of the iterated

LISP Programming Using Ellipsis Notation

pattern in the loop during a few initial computations,
and infer the following general stage of the computa-
tion.

=(12...n!fooln+1, 100])
By examining the termination condition, the value in
the simple sequence form

=(12...100)
is finally attained.

Under this sequence form regime, nonterminate func-
tions and infinite lists are quite useful as the following
example illustrates.

Example 3. infinite list

The function integer defined as

integer[i]=(i linteger[i+ 1])
is nonterminate, but inzeger[0] would be evaluated to
(012...)so that,

carfinteger{0}] =0

cdrlinteger[0]]=(12...)

This mechanism may offer another way of lazy evalua-
tion [6].

In the evaluation process of the functions defined with
the ellipsis notation as in the above examples, we require
a mechanism which can extrapolate the ommited part
of the elliptical form. It is also required when abstracting
iterative reduction steps to get the results in an elliptical
form. In both cases, the formula extrapolator plays
the essential part of the system. We describe its algorithm
briefly in a later section.

2. Sequence From and its Evaluation

In this section, we describe a hyper system of LISP
which contains the implementation of the techniques
described above. The system consists of the syntactical
constitution and evaluation mechanisms for sequence
forms and it allows a manipulation of the objects in the
ellipsis notation.

Although a sequence is usually given by indicating
the sample terms, it is treated as a function which gives
the n-th term for given n. This function, which is called
a sequence function, is automatically constructed from
the given sample terms by using a formula extrapolator.
The computation of sequence objects is, therefore, a
process of program transformation for a sequence func-
tion rather than the evaluation of LISP objects. For
instance, the evaluation of the following expression

eq[(st s2 ... sn), (2112 ... tm)]
is performed by checking whether the sequence function
for each sequence is essentialy the same in that context.

2.1 Syntax of Sequence Form
(1) Sequence Form
A sequence form is defined as one of the following
patterns.
(@) An usual LISP form, and :
an infix form of arithmetic and logical expression
(b) Asequence:(z1¢2...m)and (r1¢2...)
where 1, ¢2, tn are LISP forms.
(c) An expression (a sequence with an infix operator):

67

(s1®Ds2®...Dsn) and 51 Ps2D .. .)
where s1, s2, sn are LISP forms, and
@ is an infix operator.

(d) A LIT* form:

Slul, flu2, ..., flun, w, vn], ..., v2],vl] and
Slul, flu2, ..., v2)vl]

where fis a function name, and

ul, u2, un, vl, v2, vn, w are LISP forms.

(e) A uform: (uy(sl s2 ... sn) P[y])
where P is a predicate of y.

(f) An application: f[x], f[x, y], etc.

(g) A list constructor “(*,”)” and a strip operator
“1” can be used to constitute a new sequence
form, such as

(1231x1x2x3...))

(h) A conditional form: (if p then q else r)

where p is a LISP form and ¢, r are sequence forms.

All through the above definition, the number of the

sample terms such as 1, 42 is arbitrary, but there should
be enough to be unambiguous.

(2) Sequence Constant

A sequence constant is the most reduced sequence
form, which would be derived from one of the above
forms. For instance,

(@ (12...100)

b)) 1+2+..))

(c) iplusll, iplus(2, ..., iplus[100, 0}...]]

(3) Slambda Function

A function defined with a sequence form is called a
slambda function. It has the form as follows,

(SLAMBDA (¢slambda variables)) {sequence form})
where (slambda variables) is a list of either simple
atom or a sequence of subscripted variables such as

(xi x2 x3 ... xn).

For example,

(a) (SLAMBDA (N) (1s2%3x...xN))

(b) (SLAMBDA ((X1 X2 X3 ... XN)

(Y1 Y2Y3... YM))
((X1+YI1)(X2+Y2) - (XN+YN)))

A user function can be defined with the slambda via a

system function DEFSEQ. DEFSEQ puts the slambda

body into the function cell without any modification.

For instance,

DEFSEQ[REV1 (SLAMBDA ((X1 X2 ... XN))

(XN X{N-1)...XD)]

DEFSEQ[REV2 (SLAMBDA(X)('REV2[CDR[X]]

CAR[X])]
(4) Internal Representation of Sequence
In the system a sequence is represented by the follow-
ing 4-tuple with a marker SEQ.
(SEQIOGF)
where I: an initial term
O: a separater (an infix operator)
G: a sequence function
F: a final term

*This list iteration LIT is slightly extended from its original
definition by Barron and Strachey [1].

68

For example, a sequence (135 ... N) is represented
internally as
(SEQ 1 “” 2«(n—1)) N)
and the sequence ((X*1) +(X*2)+---) as
(SEQ (X=*1) “+” (X*n) NIL)
A LIT form has a special internal representation as
follows
(LITFLKR)
where F: a function
L: a left argument sequence
K: the innermost argument
R: a right argument sequence
For example,
Sflal,fla2,fla3, .. .,fla,, c, b,], ..., b3], b2), bl]
is represented internally as
(LIT f (SEQ al “” Ga an)
¢ (SEQ b1 " Gb bn))
where Ga, Gb are sequence functions for a,, b, respec-
tively.

2.2 Evaluation Mechanism
The evaluation of a sequence form is rather different
from what the usual LISP eval function does in the point
that it iterates nondeterministic reduction steps by
using a lot of reduction rules and sometimes abstracts
the reduction steps using ““---” if it becomes aware of
an iteration of the same pattern of a reduction.
(1) Reduction Rules for Sequence Form
The reduction rules for a sequence form are defined
as follows.
(a) LISP rules: For a LISP object L,
L=seval[L]
(b) sequence reduction rules: For a sequence s=
(SEQIOGF),
s=>(SEQ eval[l] O trans[G] eval[F])
where trans[G] means the optimized sequence
function in the current context. For instance, a
sequence function (X+n—1) of a sequence ((X +0)
(X+1)(X+2)---) is transformed into n when a
current value of X is 1.
(c) strip operator rule: For sequence form s,
I(s)=>s
(d) For applications of primitive functions to sequence
forms s=(SEQII O1 G1 F1) and r=(SEQI2 02
G2 F2),
car-rule: car[s]=-eval[ll]
cdr-rule: cdr[s]=>s’
where s'=(SEQ eval[G[2]] O trans[G[n+1]]
eval[F])
cons-rule: consls, t]=>(s!t)
eq-rule: eq[s, t]=if eval[ll]=eval[I2]
and O1 =02 and trans{G1=G2] and
eval[F1]=eval[F2] then T else NIL.
(e) LIT rule: For a LIT form,
(LITFLKR)=(LITFL'KR)
where LEL’, RA&R’
(2 means closure of =)
(f) if-then-else rule: For a conditional form,

A. Fusaoka and H. Funta

(if p then q else r)=>q if p2T
=r if p&NIL
(g) prule: For a y form,
(uy (s1s2s3 ... sm)Ply))
=Perform the reductions P[s1], P[s2], P[s3], ...
and returns first si’ (si&si’)
such that Psi]%&T
(h) unfolding[3]:
For the application of a user defined function f to
a sequence form s,
fls]=>definition body of f
with the actual parameter s
Binding of the sequence variable x=(xI x2x3 ...
xn) to a value s, is performed as follows.
If the value is a list then it is transformed into
a sequence (sl s2s3 ... sn), and the binding pair
((SEQ x1 . Gx xn)
(SEQ s1 ““,” Gs sn))
is generated.
If sis a sequence (SEQ I O G F), just a binding pair:
((SEQ x1 *,” Gx xn)
(SEQ I O G F)
is generated. n is bound to the length of s.
The value of each xi is generated by using the
binding pair when it is necessary.
(2) Loop Abstraction
In the process of evaluation of a recursively defined
function, the stage of reduction with the similar form
is usually repeated, because it contains the repetitive
application of the unfolding rule to that function. If
the form of the general stage of the reduction can be
inferred from the first few stages, then it will be possible
to generate the result in the simple form of a sequence
or LIT form, avoiding the actual execution of the
iteration process.
To illustrate the method of this loop abstraction, we
consider the next function foo,
Joolx, yl=(if x>y then () else(x ! foolx+ 1, y])))
The reduction steps of foo[l, 100] are as follows.
Jfoo[l, 100]
=(if 1 > 100 then () else (1 !foo[2, 100]))
=(1 !foo[2, 100]) - - -if-then-else rule
=(1 (if 2> 100 then ()
else (2 ! foo[3, 100))))
- - -unfolding of foo
- - -if-then-else rule
- - -strip operator rule

=(1 (2 !foo[3, 100]))
=>(1 2 ! foo[3, 100])
=(12 I(if 3> 100 then ()
else (3 ! foo[4, 100])))
- - -unfolding of foo

=>and so on.
The underlined stages which are generated by the
application of unfolding rule are used as the sample
data for the formula extrapolator to infer the general
stage:

(12 n

W(if n+1> 100 then ()
else (n+1 ! fooln +2, 100))))

LISP Programming Using Ellipsis Notation

A value of n should be determined to select such a
program segment that the same reduction step is not
repeated any more. In this case, n is bound to 100, and
the reduction terminates.

=(12...100 %))

=(12...100) - - -strip operator rule
2.3 Transformation

A transformation from a sequence form into a LISP
object is performed by a system function TRANSSEQ
which accepts a function name and a sequence form, and
transforms it into a LISP function with recursion or
iteration. For instance,

TRANSSEQ[FOO (123 ... 100)]
generates a LISP function of name FOO with an auxiliary
recursive function FOO1 as follows.

FOO =(LAMBDA () (FOOL1 1))

FOO1=(LAMBDA (X) (COND ((EQ X 100)NIL)

(T(APPEND(LIST X)(FOOI(ADDI X1))))))

3. Sequence Definability

In this system, a convenient way to specify a LISP
function in the sequence form is provided. DEFINES
system function, which allows the programming in the
ellipsis notation, transforms a sequence form into a LISP
function with recursion or iteration.

DEFINES takes a function name and a slambda func-
tion as its body, and puts the corresponding LISP
function into function cells.

A function defined by DEFINES is evaluated by the
usual eval function instead of applying sequence form
reductions. For instance,

DEFINES[FOO (SLAMBDA(X)(1#2#3%...%X))]
defines an usual factorial function.

3.1 Slambda Variable

As are in the DEFSEQ, two types of slambda variable
list are permitted in DEFINES.

The first is a list of atoms. This type of a variable is
called a simple variable. The second type is a sequence
of subscripted variables, that is called a sequence
variable, or a list of a sequence variables. For instance,

(X1X2--- XN)or (X1 X2--- XN)

(Y1 Y2--- YM))

In a simple variable list, one of the three special
variables MAX, MIN and TILL may occur as a last
element of the list. These parameters tell us when to
terminate the computation. The occurence of the
MAX(MIN) means that the computation is continued
until the value of the next term of the sequence exceeds
(becomes less than) the value of MAX(MIN). An
occurence of TILL means that the number of terms for
the sequence to be computed is up to the value of TILL.
For instance, the function EX defined as

DEFINES[EX (SLAMBDA(X MIN)

(1+X+
(X=X/(2%1)) +
(XX X/(3%21)) + .. .)]

69

gives such a value as

N-1 yk
o k!

where X¥/N1<MIN
On the other hand, the NTHCDR function defined as
DEFINES[NTHCDR (SLAMBDA(X TILL)
(CDR:- - -(CDR X)---)]
applies CDR to X repeatedly to get TILL-th cdr of X.

3.2 Filtering

A filtering which is a searching process of the candidate
from enumerative components of a sequence can be
represented in DEFINES in the following way.

DEFINES[INTEGER-SQUAREROOT

(SLAMBDA(X)Y(MU Y(12 - - X)
(Y+Dx(Y+1)>X)))]

where MU represents p-operator. This definition specifies
an algorithm which repeats the checking,

2%«2> X, 3%3> X, and so on,

until it finds out Y such that (Y+1)x(Y+1)>X. How-

ever, this algorithm contains a lot of unnecessary

computations so that some optimization is required.
The optimization is performed as follows.

(a) A function NEXT which gives the next candidate
is constructed from the sequence function for the
sequence (12 ... X);

NEXT: u=u+1.
(b) Assume that (u+ Dx(u+1)<X.
In this case, the next stage:
U+ D)+ Dx(u+D+1)-X
=(u+D*(u+1)—X+2%u+3
should be computed to check if the result is posi-
tive. But the underlining part of the expression is
already computed in the previous stage, so that
only the other part should be computed.

This strategy leads to a simple loop shown in the Fig.

1. Also the optimized program by DEFINES is shown in

the Fig. 2.

In this system, a goal directed optimizer is used in
which the simplification rules:

(a) unfolding of a function and an expression

(b) replacement of expression into a variable

(c) usage of rules such as,
car[cons[x, yJ}=x

are contained. These rules are also used in the sequence

form reductions.

4. Formula Extrapolation

The problem of inferring a general term of a sequence
from some given sample terms is called formula ex-
trapolation. The function of formula extrapolation is
one of the essential parts of this system, because the
class of functions representable in this system depends
upon the performance of the formula extrapolator.

In this section, we present a method of inference on
which the formula extrapolator is based. Let (7’1 T2
T3T4...) be a given sequence where T1, T2, T3

70

no

S &~ s + 2 *u + 3
u &~ u + 1

Fig. 1 A Loop for (uy (12...x) (p+1)+(y+1)>x)).

(INTEGER-SQUAREROOT
[LAMBDA (X)
(PROG ((U0061 1)
(A0067 1)
F0069)
(SETQ F0069 (PLUS (MINUS X)
4)
L100(IF (IGREATERP F0069 0)
THEN (RETURN A0067))
(SETQ F0069 (PLUS 3 F0069
(TIMES U0066 2)))
(SETQ U0066 (ADDI1 U0066))
(SETQ A0067 (PLUS A0067 1))
(GQ L100)

Fig. 2 The INITEGER-SQUAREROOT program generated by
DEFINES.

and 74 are sample terms. We assume that the given
samples have uniform properties so that we can easily
construct a general term.
The problem is divided into four cases, based on the

length of the sample terms.
Case 1. The lengths of all the sample terms are the
same: that is, for each sample term 77,

length(Ti) =length(7¢i + 1))

Ex. (X—1 X-2 X=3..)
Case 2. The length of the sample term is increasing:
that is, for each sample term Ti,

length(T7) < length(7T(i + 1))

Ex. (X XsX XxXxX...)
Case 3. The length of the sample term varies periodi-
cally.

Ex. (X+(X—1) (X-2) X«(X-3) (X—4)...)
Case 4. The length of the sample term is decreasing:
that is, for each sample term T7,

length(7%) > length(T<i + 1))

Ex. (X+X+X+X X+X+X X+X...)

4.1 Casel
For this case, we form a “difference sequence” from

A. Fusaoka and H. Fuita

the given terms. That is, we compare the corresponding
symbols of each term, and ignoring the symbols that
are the same, we make a new sequence from the symbols
that are different. For instance, suppose that X—1,
X—2 are neighboring terms. The first symbol of each
term is equal to X, and the second symbol is equal to
“—”, These symbols are ignored. The third symbol
of the first term is equal to 1, the third symbol of the
second term is 2, and the third symbol of the third term
is 3. Thus, we get a difference sequence of (123 ...).
If we can find a general term for the difference sequence,
we can substitute that term back into each of the original
terms. For instance, in the above example, the general
term of the difference sequence is n. Substituting that
back into the original terms gives X —n, which is the
general term for the original sequence.

Of course, the original sequence could yield several
separate difference sequences. For instance, if the given
sample is

(X*142 X*243 X344 ..)
we get two separate difference sequences

(123...)and(234...)

The general terms for these sequences are #n and n+1
respectively. Therefore, the general term of the original
sequence is X*n+(n+1).

There may be several difference sequences, but they
each contain atomic symbols rather than complex
terms. We distinguish between two cases:

(1) Case 1.1

The elements of the difference sequence are numbers.
In this case, the problem is reduced to the number
extrapolation.

(2) Case 1.2

The difference sequence is cyclic. For example, a
sequence

(SIN[X] COS[X] SIN[X]...)
gives a difference sequence (SIN COS SIN). In this case,
the general term is represented by a conditional expres-
sion as follows,

(if n=1 (modulo 2) then SIN else COS)

Therefore, the general term of the original sequence is

(if n=1 (modulo 2) then SIN[X] else COS[X])

The implemented version of the system does not handle
this case.

4.2 Case2

(The length of the sample term is increasing.) In
this case, we decompose the original problem into
several problems of formula extrapolation. We introduce
a binary relation S1<S2 for formulas S1 and S2,
meaning that S1 is a subformula of S2.

Ex. X+Y<3+X+Y-4

If the length of the term is increasing, we cannot
always give a general term as a simple algebraic expres-
sion of n. However, we present here an algorithm to
construct the n-th term of the sequence for a given n.

We explain our method by examples. Suppose that
the given samples are,

LISP Programming Using Ellipsis Notation

Tl=X+1,T2=X«X+2, T3=X*+X+X+3,
TA=XxX*xX»X+4.

First Step

At first, we try to find out the formula sequence S=
(S1 52 S3) which satisfies the following two properties:

For given samples (T'1 72 T3 T4),

(1) (S1<T1) and (S1<T2),
(S2<T2) and (S2<T3),
(S3<T3)and (S3<T4),

(2) S1<82<S3.

If there are many sequences with the above properties,
we select the sequence in which the lengths of terms are
maximum. In our example,

Sl=X, S2=X*X, S3=X«X*X
that is, S=(X X*xX XsX*X).

Second Step

Let Ti’ be the result of replacing Si in 77 by some new
constant 4. Then we have a new sequence T'. In our
example,

TI'=A+1,T2 =A+2, T3¥=A4+3,T4'=A4+4

Assume that we get a n-th term Tn'=A +n, then we
can construct a n-th term of the original sequence by
substituting the n-th term of S for 4 in Tn'. In general,
the sequence 7’ may be length-increasing again, but
it is simpler than the original sequence because the
length of each term is decreased. Therefore, the original
problem has been reduced to the two formula extrapola-
tion problems, 7' and S.

Third Step

In this step, we construct a general term of S. Since
the sequence S has a property

S1< 82«83
we can derive another sequence S’'=(S2'S3') by
replacing S(i—1) in Si by some new constant B. In our
example,

S1=X, S2=XxX, S3=X+X*X,
therefore,

S2'=B*X, S3' =BxX
We have another sequence extrapolation problem S'.
Assume that we get the n-th term Sr’ of the sequence
S’ by a recursive call on the formula extrapolator.

The term S2 is constructed by substituting S1 for B
in S2’ and the term S3 is constructed by substituting S2
for Bin S3'. Similarly, we can get the n-th term of S by
iterating the substitution n—1 times beginning from
S2'. In our example,

Sn’=BxX, and S1=X
therefore, by substituting X for Bin S2’,

S2=XxX
and, by substituting X*X for B in S3,

S3=XxX*X
and so forth, to get finally Sn.

71

Fourth Step
For given n, construct n-th term of T’, and substitute
Sn for A in Tn'. Then we can derive the n-th term Tn
of the original sequence.
Another example: Suppose that given samples are,
Tl=1,T2=1%2, T3=1%223, T4=152+3%4
then,
S1=1,82=1%2, S3=1%2+3
by replacing Si in Ti by a symbol 4, we get T’ such that
TI'=A,T2'=A,TY=A4,T4 =4
therefore, we can infer that Tn' = A.
On the other hand, by replacing S(i—-1) in Si by a
symbol B, we get,
S2'=B*2, S3' =B*3
therefore, the »-th term of S’ is Sn’ = Bxn.
‘The n-th term of § is constructed by iterating sub-
stitution n— 1 times. Therefore,

Sl=1 - - -by the given sample
S2=1%2 -+ -by substituting S1 for B in §2’
S3=1#243 - - - by substituting S2 for B in S3’

and so forth.
By substituting Sn for 4 in Tn’, we get the n-th term of
the original sequence.

4.3 Case3

(The length of the sample term varies periodically.)
In this case, the sequence is decomposed into several
sequences that satisfy the condition of Case 1 or Case
2, and a general term is represented in a conditional
expression in a similar way to Case 1.2. However, in
the present version, this case is not implemented.

44 Cased

(The length of the sample term is decreasing.) In
this case, the sequence is finite. Therefore, it does not
seem to be useful. This case is not implemented.

S. Implementation

The experimental system was written in QLISP[11],
and several examples have been successfully run. In
many cases, readability or understandability of programs
written in sequence forms can be improved very much,
compared with that of ordinary programs with iteration
or recursion. Moreover the notation together with
hierarchical program decomposition technique allows
us to grasp at a glance the structure of even multiply
nested iterative algorithm, abstracting the procedural
detail; one could easily find the structural similarity
between merge-sort and Fast-Walsh-Hadamard trans-
form algorithms using the sequence forms (listed in
Appendix).

We intend to use the system as one of the LISP
packages which would present us a convenient program-
ming environment. We also aim at incorporating our
system into some formula manipulation system.

At present, however, there exists the limitation of the

72

use of sequence forms for program description owing
to the power of the formula extrapolator. The problem
has two aspects; one is the algorithmic limitation of for-
mula extrapolation for each sequence, and the other is
how to resolve the ambiguity, that is, the way to dis-
tinguish one sequence from many others which we
could infer reasonably from the given finite number of
sample terms.

The formula extrapolator, in the current implementa-
tion, can treat algorithmically up to fourth order of
arithmetic and geometric progressions for number
sequences, but practically the extrapolation for simple
arithmetic and geometric progressions is sufficient in
most cases. Because such number sequences often appear
as subscripts for vectors and the like, especially in the
iterative algorithm. For sequences of general formula,
the extrapolator tries to apply the above described
algorithms which essentially make use of only the
symbolic difference between neighboring terms.

As for sequences which the above algorithms fail to
extrapolate, the system gives rise to exceptions to break
its execution. In another case, when the algorithm finds
the ambiguity in the sequence caused by insufficiency of
sample terms, the system arbitrarily use the strategy to
choose the simplest one from the alternatives. For
instance, given the sequence (12 ...), we should
assume it to be extrapolated as (1234 ...) instead
of (1248...) or others. Thus, rather peculiar
sequences such as prime numbers, Fibonacci series, etc.
are to be excluded from our ordinary usage of sequence
forms.

6. Concluding Remarks

A program specification and its evaluation method
using ellipsis notation which is based on a formula
extrapolator has been described.

The ultimate goal of the work presented is the simpli-
fication of programming tasks by utilizing and mechaniz-
ing human ability of inductive inference. Similar ap-
proaches have been studied in Simon’s work on sequen-
tial patterns [8], in the works on program construction
from examples [9][5] and in the recent work on inductive
inference by Shapiro [7].

Acknowledgements

The authors wish to thank Dr. R. Waldinger at
Stanford Research Institute. The idea of a specification
method of program by a sequence was given by him and
the initial system which allows the program writing
using sequence has been built at Stanford Research
Institute. This is an extensional work to that system [4].
The authors would also like to thank Dr. C. Green at
System Control Inc. for his invaluable comments and
suggestions.

References

1. Barron, D. W. and Strachey, C. Programming, in Advances in
Programming and Non-numerical Computation, Pergamon Press
(1966).

A. Fusaoka and H. Fuira

2. Boyer, R. S. and Moore, J. S. A Computational Logic,
Academic Press (1979).

3. Burstall, R. M. and Darlington, J. A transformation system
for developing recursive program, J. ACM Vol. 24, No. 1, 44-67
1977).

4. Fusaoka, A. and Waldinger, R. Program Writing Using
Sequences, SRI memo (1974).

5. Green C. et al. Progress report on program understanding
systems, AIM-740, Stanford Univ. (1974).

6. Henderson, P. and Morris, J. H. Lazy evaluator, Conf. Rec.
3rd ACM sympo. POPL, 95-103 (1975).

7. Shapiro, E. Y. Inductive inference of theories from facts,
Research Report 192, Yale Univ. (1981).

8. Simon, H. A. Human acquisition of concepts for sequential
pattern, in Models and Thought, Yale, 263-273 (1979).

9, Summers, P. D. A methodology for LISP program construc-
tion from examples, Conf. Rec. of 3rd ACM sympo. POPL, 68—
76 (1975).

10. Turner, D. A. Recursion equations as a programming
language, in Functional Programming and its Applications,
Cambridge Univ. Press, 1-28 (1982).

11. Wilber, M. A QLISP Referential Manual, Tech. Note 118,
SRI, Menlo Park, CA. (1976).

Appendix

1. Merge-Sort Algorithm

DEFINE[SORT (LAMBDA(X)(CAR(SORT2
(SORTI X)
(ADDI(FIX(QUOTIENT(LOG(SUBI
(LENGTH X)))(LOG 2)

DEFINES[SORT! (SLAMBDA(X1 X2 ... XN)

((LIST X1)(LIST X2)...(LIST XN]

DEFINES[SORT2 (SLAMBDA(X TILL)

(SORT3...(SORT3 X)..]
DEFINES[SORT3 (SLAMBDA(X1 X2 ... XN)
((MERGE X1 X2)(MERGE X3 X4). ..
(MERGE X{(N—1>XN]
DEFINE[MERGE (LAMBDA(X Y)
(COND ((NULL X)Y)
((NULL Y)X)
((GREATERP(CAR Y)CAR X))
(CONS(CAR X)(MERGE
(CDR X)Y)))
(T(CONS(CAR Y)(MERGE X
(CDR Y]

2. Fast-Walsh-Hadamard Transform Algorithm

DEFINE[FWHT (LAMBDA(X)(CAR(FWHT2
(FWHTI1 X)
(FIX(QUOTIENT(LOG
(LENGTH X))(LOG 2]
DEFINES[FWHT! (SLAMBDA(X1 X2 ... XN)
((LIST X1)(LIST X2)...(LIST XN]
DEFINES[FWHT2 (SLAMBDA((X1 X2 ... XN)
TILL)
(FWHT3. . .(FWHT3 X). .]
DEFINES[FWHT3 (SLAMBDA(X1 X2 ... XN)
((APPEND(FWHT4 X1 X2)(FWHTS5 X1 X2))
(APPEND(FWHT4 X3 X4)(FWHTS5 X3 X4))

(APPEND(FWHT4 X{N—1> XN)YEWHTS5
X{(N—-1) XN]

LISP Programming Using Ellipsis Notation 73

DEFINES[FWHT4 (SLAMBDA((X1 X2 ... XN) DEFINES[FWHTS (SLAMBDA((X1 X2 ... XN)
(Y1 Y2 ... YN)) (Y1 Y2 ... YN)
(X1 + Y1) (X2+Y2).. .(XN+YN] ((X1-Y1)(X2—Y2)...(XN=YN]

(Received January 21, 1982: revised July 23, 1982)

