Short Note

An Efficient Algorithm for Generating all Partitions
of the Set {1, 2, ..., n}

IcHIRO SEMBA*

We consider the problem of generating all partitions of the set {1, 2,-++, n}. An efficient algorithm based
on backtrack technique is presented. The average running time per partition is proved to be bounded by a
constant. Experiments showed that our algorithm is faster than other algorithms so far proposed.

1. Introduction

We consider the problem of generating all partitions
of the set {1,2,---,n}. A partition of {1,2,---,n}
consists of m classes C,, C,,* -, C,, where CinC;=

¢ £ 5 C={1,2,n} and C;#¢ (Isi<m).

Therefore, for n=3, we have the following 5 partitions:
(123), (1 2)(3), (1 3}(2), (N2 3), (DH)Q3).

A well-known generating algorithm is given in
Nijenhuis and Wilf [1]. Kaye [2] has considered another
algorithm generating successively all partitions by
changing the class of exactly one element and has shown
that the average running time per partition is bounded
by a constant. We propose a generating algorithm based
on backtrack technique and prove that the average run-
ning time per partition is bounded by a constant. Com-
puter tests indicated that our algorithm was faster than
other algorithms.

2. Generating Algorithm

In this section, we describe a new algorithm generating
all partitions of the set {1, 2,---, n}.

We assume that a partition P of {1, 2, - -, n} consists
of m classes C,, C,,- -, C,. By the children of P, we
mean the following partitions P,, P,,---, P,., of
{1,2,---,n,n+1}.

P,:C,uin+1}, Cy,---, C,

P,:C,, Cou{n+1}, Cs,---, C,

szcl, CZ,' ) Cmu{n+1}
Pm+l:cla Cz;' ) Cm’ {Il+1}

The first m children of P are obtained from P by
inserting n+ 1 into one of the classes of P and the last
one is obtained by adding a singleton {n+1} to P.
Therefore, all partitions of {l1,2,---,n} can be re-
presented in a tree as in Fig. 2.1.

*Department of Pure and Applied Sciences, College of General
Education, University of Tokyo, Komaba, Meguro-ku, Tokyo 153,
Japan.

Journal of Information Processing, Vol. 7, No. 1, 1984

Our generating algorithm is established by traversing
this tree. Backtrack technique is used to traverse this
tree. We use two arrays, a; (1 <i<n), indicating the class
to which element i belongs and g; (1 <i<n), representing
the number of classes in the partition under consideration
at level i.

When we traverse the tree, three cases are considered.
Let k be the level of the node under consideration.
Case 1. If k<n, then we move down to the first son.

Namely, we set k—k+1, g,«1 and g, «<g,_,.

Case 2. If k=n and g, < g,, then we print out a solution
a,," ‘-, a, and move left to right in the level n
of the tree. Namely, we set a;«a,+1.

Case3. If k=n and a,=g,+1, then we backtrack.
Namely, we set k<k—1, until g,_, becomes
equal to g,. Then, we set gy—a,+1. If g, >g,,
then we set g, «a,.

level 1: 1)

level 2: a2 02

level 3: (1 3)/\(12 3 43R ORIy OO
level 4: (1234) (1234 (1293) --- HRGH OO @

Fig. 2.1 A tree coresponding to partitions of {1, 2, -+, n}.

begin

a,;:=1;g,:=1; k:=1;

1:

{Case 1}

while k <n do begin
ki=k+1;a:=1; gyi=gx_,

end;

output (ay,- -, a,);

{Case 2}

10. while a,<g, do begin

11. ay:=a,+1; output (a,," - *, a,)

12. end;

13. {Case 3}

14. repeat

15. ki=k—1;

16. if k=1 then stop;

17. wmtil g,_,=gs;

18. ax:=ax+1;

19. if a,>g, then g, :=a,;

20. goto 1

21. end.

Fig. 2.2 Generating Algorithm.

VRN AW



42

Our algorithm is written in PASCAL-like notation in
Fig. 2.2. The procedure “output (a,," - -, a,)”’ prints out
the partition determined by a,, - -, a,.

3. Analysis of Generating Algorithm

In this section, we prove that the average running time
per partition of {1, 2,---, n} is bounded by a constant.
The number of edges examined to traverse a tree is a
reasonable measure of the work. We denote it by E,.
Property 1. Let B, be the number of partitions of
{1, 2, -, n} (i.e., Bell number).

E,<2(B,+---+B;) (n=2)

Proof. Obvious, since our generating algorithm is based
on backtrack technique.
Property 2.

E,/B,<4 (n=2)
Proof. Since B;,,>2B; (2<i<n—1), we have
E,/B,<2(B,+---+B,)/B,

1 1 1
<2(1+§+-27+-"+2—_5><4

Theorem 1 Let n>2.

The average running time per partition of {1, 2,- - -, n}
is bounded by a constant.
Proof. By Property 2, it is easily shown.

4. Experimental Results

We have measured the time required to generate all
partitions of {1, 2,---, n} for a well-known algorithm,
Kaye’s algorithm and our algorithm, coded in PASCAL,
on a MELCOM-COSMO 900 II at Educational Com-
puter Centre, University of Tokyo. The average running
time required to generate all partitions of {1,2,:--, n}
is shown in Table 1. We have also measured the time,

1. SEMBA

Table 1 The average running time required to generate all
partitions of {1,2,---,n}.
(times in milliseconds).

n Nijenhuis’s Kaye’s Our
algorithm algorithm algorithm
6 6.0 5.4 3.8
7 23.6 222 14.4
8 111.2 102.0 61.6
9 550.8 497.4 296.2
10 2,982.2 2,695.0 1,564.2

Table 2 The average running time required to generate all
partitions of {1,2,---,n}.
(times in milliseconds).

Nijenhuis’s Kaye’s Our

n algorithm algorithm algorithm
6 0.7 0.7 0.4
7 2.6 2.8 1.5
8 12.4 12.4 6.4
9 60.8 61.0 31.5
10 328.0 326.3 166.6
11 1,900.3 1,872.4 948.0

coded in FORTRAN, on a M280H at the Computer
Centre, University of Tokyo. The result is shown in
Table 2. These results indicate that our algorithm is
faster than other algorithms.

Acknowledgement

The author would like to thank referees for valuable
comments.

References

1. Npuennus, S. and WiLr, H. S. Combinatorial Algorithms,
Academic Press, New York, 1975, 81-86.

2. KAvEg, R. A Gray Code for Set Partitions, Information Proc-
essing Letters, 5, 6 (1976), 171-173.

(Received May 27, 1982; revised Aug. 24, 1982)



