An Efficient Algorithm for Generating all Partitions of the Set $\{1, 2, ..., n\}$

ICHIRO SEMBA*

We consider the problem of generating all partitions of the set $\{1, 2, \dots, n\}$. An efficient algorithm based on backtrack technique is presented. The average running time per partition is proved to be bounded by a constant. Experiments showed that our algorithm is faster than other algorithms so far proposed.

1. Introduction

We consider the problem of generating all partitions of the set $\{1, 2, \dots, n\}$. A partition of $\{1, 2, \dots, n\}$ consists of m classes C_1, C_2, \dots, C_m , where $C_i \cap C_j = \phi$ $(i \neq j), \bigcup_{i=1}^m C_i = \{1, 2, \dots, n\}$ and $C_i \neq \phi$ $(1 \leq i \leq m)$. Therefore, for n = 3, we have the following 5 partitions: $(1 \ 2 \ 3), (1 \ 2)(3), (1 \ 3)(2), (1)(2 \ 3), (1)(2)(3)$.

A well-known generating algorithm is given in Nijenhuis and Wilf [1]. Kaye [2] has considered another algorithm generating successively all partitions by changing the class of exactly one element and has shown that the average running time per partition is bounded by a constant. We propose a generating algorithm based on backtrack technique and prove that the average running time per partition is bounded by a constant. Computer tests indicated that our algorithm was faster than other algorithms.

2. Generating Algorithm

In this section, we describe a new algorithm generating all partitions of the set $\{1, 2, \dots, n\}$.

We assume that a partition P of $\{1, 2, \dots, n\}$ consists of m classes C_1, C_2, \dots, C_m . By the *children* of P, we mean the following partitions P_1, P_2, \dots, P_{m+1} of $\{1, 2, \dots, n, n+1\}$.

$$P_1:C_1 \cup \{n+1\}, C_2, \dots, C_m$$

$$P_2:C_1, C_2 \cup \{n+1\}, C_3, \dots, C_m$$

$$\vdots$$

$$P_m:C_1, C_2, \dots, C_m \cup \{n+1\}$$

$$P_{m+1}:C_1, C_2, \dots, C_m, \{n+1\}$$

The first m children of P are obtained from P by inserting n+1 into one of the classes of P and the last one is obtained by adding a singleton $\{n+1\}$ to P. Therefore, all partitions of $\{1, 2, \dots, n\}$ can be represented in a tree as in Fig. 2.1.

Our generating algorithm is established by traversing this tree. Backtrack technique is used to traverse this tree. We use two arrays, a_i $(1 \le i \le n)$, indicating the class to which element i belongs and g_i $(1 \le i \le n)$, representing the number of classes in the partition under consideration at level i.

When we traverse the tree, three cases are considered. Let k be the level of the node under consideration.

- Case 1. If k < n, then we move down to the first son. Namely, we set $k \leftarrow k + 1$, $a_k \leftarrow 1$ and $g_k \leftarrow g_{k-1}$.
- Case 2. If k=n and $a_k \le g_k$, then we print out a solution a_1, \dots, a_n and move left to right in the level n of the tree. Namely, we set $a_k \leftarrow a_k + 1$.
- Case 3. If k=n and $a_k=g_k+1$, then we backtrack. Namely, we set $k\leftarrow k-1$, until g_{k-1} becomes equal to g_k . Then, we set $a_k\leftarrow a_k+1$. If $a_k>g_k$, then we set $g_k\leftarrow a_k$.

Fig. 2.1 A tree coresponding to partitions of $\{1, 2, \dots, n\}$.

```
1. begin
 2.
     a_1:=1; g_1:=1; k:=1;
 3. 1:
    {Case 1}
 5.
     while k < n do begin
          k := k+1; a_k := 1; g_k := g_{k-1}
 7.
 8
     output (a_1, \dots, a_n);
 9.
      {Case 2}
10.
     while a_k \leq g_k do begin
11.
           a_k := a_k + 1; output (a_1, \dots, a_n)
12. end:
13.
      {Case 3}
14.
     repeat
15.
           k := k-1;
          if k=1 then stop;
16.
     until g_{k-1} = g_k;
17.
18. a_k := a_k + 1;
19. if a_k > g_k then g_k := a_k;
     goto 1
21.
     end.
```

Fig. 2.2 Generating Algorithm.

^{*}Department of Pure and Applied Sciences, College of General Education, University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan

Our algorithm is written in PASCAL-like notation in Fig. 2.2. The procedure "output (a_1, \dots, a_n) " prints out the partition determined by a_1, \dots, a_n .

3. Analysis of Generating Algorithm

In this section, we prove that the average running time per partition of $\{1, 2, \dots, n\}$ is bounded by a constant.

The number of edges examined to traverse a tree is a reasonable measure of the work. We denote it by E_n .

Property 1. Let B_n be the number of partitions of $\{1, 2, \dots, n\}$ (i.e., Bell number).

$$E_n < 2(B_n + \cdots + B_2) \quad (n \ge 2)$$

Proof. Obvious, since our generating algorithm is based on backtrack technique.

Property 2.

$$E_n/B_n < 4 \quad (n \ge 2)$$

Proof. Since $B_{i+1} > 2B_i$ $(2 \le i \le n-1)$, we have

$$E_n/B_n < 2(B_n + \dots + B_2)/B_n$$

 $< 2\left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-2}}\right) < 4$

Theorem 1 Let $n \ge 2$.

The average running time per partition of $\{1, 2, \dots, n\}$ is bounded by a constant.

Proof. By Property 2, it is easily shown.

4. Experimental Results

We have measured the time required to generate all partitions of $\{1, 2, \dots, n\}$ for a well-known algorithm, Kaye's algorithm and our algorithm, coded in PASCAL, on a MELCOM-COSMO 900 II at Educational Computer Centre, University of Tokyo. The average running time required to generate all partitions of $\{1, 2, \dots, n\}$ is shown in Table 1. We have also measured the time,

Table 1 The average running time required to generate all partitions of $\{1, 2, \dots, n\}$. (times in milliseconds).

n	Nijenhuis's algorithm	Kaye's algorithm	Our algorithm
6	6.0	5.4	3.8
7	23.6	22.2	14.4
8	111.2	102.0	61.6
9	550.8	497.4	296.2
10	2,982.2	2,695.0	1,564.2

Table 2 The average running time required to generate all partitions of $\{1, 2, \dots, n\}$. (times in milliseconds).

n	Nijenhuis's algorithm	Kaye's algorithm	Our algorithm
6	0.7	0.7	0.4
7	2.6	2.8	1.5
8	12.4	12.4	6.4
9	60.8	61.0	31.5
10	328.0	326.3	166.6
11	1,900.3	1,872.4	948.0

coded in FORTRAN, on a M280H at the Computer Centre, University of Tokyo. The result is shown in Table 2. These results indicate that our algorithm is faster than other algorithms.

Acknowledgement

The author would like to thank referees for valuable comments.

References

- 1. Nuenhuis, S. and Wilf, H. S. Combinatorial Algorithms, Academic Press, New York, 1975, 81-86.
- 2. KAYE, R. A Gray Code for Set Partitions, Information Processing Letters, 5, 6 (1976), 171-173.

(Received May 27, 1982; revised Aug. 24, 1982)