Short Note

An Efficient Algorithm for Generating all Partitions
of the Set {1, 2, ..., n}

IcHIRO SEMBA*

We consider the problem of generating all partitions of the set {1, 2,-++, n}. An efficient algorithm based
on backtrack technique is presented. The average running time per partition is proved to be bounded by a
constant. Experiments showed that our algorithm is faster than other algorithms so far proposed.

1. Introduction

We consider the problem of generating all partitions
of the set {1,2,---,n}. A partition of {1,2,---,n}
consists of m classes C,, C,,* -, C,, where CinC;=

¢ £ 5 C={1,2,n} and C;#¢ (Isi<m).

Therefore, for n=3, we have the following 5 partitions:
(123), (1 2)(3), (1 3}(2), (N2 3), (DH)Q3).

A well-known generating algorithm is given in
Nijenhuis and Wilf [1]. Kaye [2] has considered another
algorithm generating successively all partitions by
changing the class of exactly one element and has shown
that the average running time per partition is bounded
by a constant. We propose a generating algorithm based
on backtrack technique and prove that the average run-
ning time per partition is bounded by a constant. Com-
puter tests indicated that our algorithm was faster than
other algorithms.

2. Generating Algorithm

In this section, we describe a new algorithm generating
all partitions of the set {1, 2,---, n}.

We assume that a partition P of {1, 2, - -, n} consists
of m classes C,, C,,- -, C,. By the children of P, we
mean the following partitions P,, P,,---, P,., of
{1,2,---,n,n+1}.

P,:C,uin+1}, Cy,---, C,

P,:C,, Cou{n+1}, Cs,---, C,

szcl, CZ,' ) Cmu{n+1}
Pm+l:cla Cz;' ) Cm’ {Il+1}

The first m children of P are obtained from P by
inserting n+ 1 into one of the classes of P and the last
one is obtained by adding a singleton {n+1} to P.
Therefore, all partitions of {l1,2,---,n} can be re-
presented in a tree as in Fig. 2.1.
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Our generating algorithm is established by traversing
this tree. Backtrack technique is used to traverse this
tree. We use two arrays, a; (1 <i<n), indicating the class
to which element i belongs and g; (1 <i<n), representing
the number of classes in the partition under consideration
at level i.

When we traverse the tree, three cases are considered.
Let k be the level of the node under consideration.
Case 1. If k<n, then we move down to the first son.

Namely, we set k—k+1, g,«1 and g, «<g,_,.

Case 2. If k=n and g, < g,, then we print out a solution
a,," ‘-, a, and move left to right in the level n
of the tree. Namely, we set a;«a,+1.

Case3. If k=n and a,=g,+1, then we backtrack.
Namely, we set k<k—1, until g,_, becomes
equal to g,. Then, we set gy—a,+1. If g, >g,,
then we set g, «a,.

level 1: 1)

level 2: a2 02

level 3: (1 3)/\(12 3 43R ORIy OO
level 4: (1234) (1234 (1293) --- HRGH OO @

Fig. 2.1 A tree coresponding to partitions of {1, 2, -+, n}.

begin

a,;:=1;g,:=1; k:=1;

1:

{Case 1}

while k <n do begin
ki=k+1;a:=1; gyi=gx_,

end;

output (ay,- -, a,);

{Case 2}

10. while a,<g, do begin

11. ay:=a,+1; output (a,," - *, a,)

12. end;

13. {Case 3}

14. repeat

15. ki=k—1;

16. if k=1 then stop;

17. wmtil g,_,=gs;

18. ax:=ax+1;

19. if a,>g, then g, :=a,;

20. goto 1

21. end.

Fig. 2.2 Generating Algorithm.
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Our algorithm is written in PASCAL-like notation in
Fig. 2.2. The procedure “output (a,," - -, a,)”’ prints out
the partition determined by a,, - -, a,.

3. Analysis of Generating Algorithm

In this section, we prove that the average running time
per partition of {1, 2,---, n} is bounded by a constant.
The number of edges examined to traverse a tree is a
reasonable measure of the work. We denote it by E,.
Property 1. Let B, be the number of partitions of
{1, 2, -, n} (i.e., Bell number).

E,<2(B,+---+B;) (n=2)

Proof. Obvious, since our generating algorithm is based
on backtrack technique.
Property 2.

E,/B,<4 (n=2)
Proof. Since B;,,>2B; (2<i<n—1), we have
E,/B,<2(B,+---+B,)/B,

1 1 1
<2(1+§+-27+-"+2—_5><4

Theorem 1 Let n>2.

The average running time per partition of {1, 2,- - -, n}
is bounded by a constant.
Proof. By Property 2, it is easily shown.

4. Experimental Results

We have measured the time required to generate all
partitions of {1, 2,---, n} for a well-known algorithm,
Kaye’s algorithm and our algorithm, coded in PASCAL,
on a MELCOM-COSMO 900 II at Educational Com-
puter Centre, University of Tokyo. The average running
time required to generate all partitions of {1,2,:--, n}
is shown in Table 1. We have also measured the time,
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Table 1 The average running time required to generate all
partitions of {1,2,---,n}.
(times in milliseconds).

n Nijenhuis’s Kaye’s Our
algorithm algorithm algorithm
6 6.0 5.4 3.8
7 23.6 222 14.4
8 111.2 102.0 61.6
9 550.8 497.4 296.2
10 2,982.2 2,695.0 1,564.2

Table 2 The average running time required to generate all
partitions of {1,2,---,n}.
(times in milliseconds).

Nijenhuis’s Kaye’s Our

n algorithm algorithm algorithm
6 0.7 0.7 0.4
7 2.6 2.8 1.5
8 12.4 12.4 6.4
9 60.8 61.0 31.5
10 328.0 326.3 166.6
11 1,900.3 1,872.4 948.0

coded in FORTRAN, on a M280H at the Computer
Centre, University of Tokyo. The result is shown in
Table 2. These results indicate that our algorithm is
faster than other algorithms.
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