Superconvergence Estimates at Jacobi Points of the
Collocation-Galerkin Method for Two Point Boundary
Value Problems

MITSUHIRO NAKAO*

In this paper, we consider some error estimates of a collocation-Galerkin method for two point boundary value
problems. It is shown that the errors at certain Jacobi points are O(h'*2), where h is the maximal size of the
partitioned intervals and r is the degree of used polynomials, which is one order higher than the global optimal
error. A numerical example which confirms these results is presented.

1. Introduction

The collocation-Galerkin method which was first
introduced by Diaz [4] is a mixed technique of a colloca-
tion method and a Galerkin method. The scheme enables
us to reduce the number of quadratures in the Galerkin
method and to obtain higher accuracy than the colloca-
tion methods. The optimal global rates of convergence
and superconvergence at the mesh points for the scheme
have already been established ([1], [4], [9]).

On the other hand, for various Galerkin approxima-
tions of the two point boundary value problems, it is
known that the approximate solutions are superconver-
gent at some particular points ([2], [3], [7], [8]). In this
paper, we shall prove that the collocation-Galerkin
approximation has O(h"*2) convergence at certain Jacobi
points, where / and r are mesh size and degree of the
used approximation piecewise polynomials, respec-
tively. That is one order better than the global rate of
convergence. We shall also give a numerical example
which illustrate the superconvergence phenomena.

2. Problem and Notations

Consider the following two point boundary value
problem.

Lu= —u"+a(x)u' +b(x)u=f, x € I,
u(0)=u(1)=0, M

where I=(0, 1) and assume that, a, b € C'(7). We assume
that (1) has a unique solution for every fe C(I).

Let A:0=x,<x,<-'-<xy=1, be a partition of J
and let I;=(x;_,, x;), hy=x,—x;_, and A=max, o,y h;.
For a positive integer k and E<], let P,(E) denote the
set of polynomials on E of degree at most k. Further-
more, let
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Pl?(li)= {ve P(I)|v(x;- ) =v(x;)=0},

M5(B)={ve C)lve P(I), 1Zi< N, v(0)=0(1)=0},
Z§(A)={ve A5A)|v(x)=0,0<i<N}.

Here the symbol A will be usually omitted. We define
formz0and 1<p=

Wm(E)= .p'—, e LX(E), O<I<m}

and
m d‘w
”'/’”u";'orz)'--I;0 ax? LP(E).
Especially, denote W73(E) by H™(E). Also we define
((f,g)el 11
-mpy=  SU T —+-=1L

"l/l”WP &) 0¢gEWFZ"(E) "g"W';(E) P q

Here (-, -)g implies the L? inner product on E. When

E=1I, we suppress the dependency on the interval. In
the following we use C to denote a generic positive
constant which is not necessarily the same.

Now we state some well-known inequalities for later
use ([4]). Let ¢ € P,(7;) for some k>0, then there exists
a constant C, independent of 4;, such that

Il Lecry < Chi Pl Bl Locrys 2
19" |ory S Chi M DllLoca s 3
where 1 <p< 0.

3. Collocation-Galerkin Method

In this section we define, based on Diaz [4], a colloca-
tion-Galerkin approximation to (1). In order to do so,
first we introduce the Jacobi points. From now on we
fix an integer r (22). Let

dr—l

1
Jr(x) x) dxr I[X’(l x)’]»

ocx(l
where « is a constant chosen so that the coefficient of
¥~ in J(x) is 1. J,(x) has r—1 distinct roots p; on 1.
Then the Jacobi points x;; on the subinterval I, are
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defined by
Xy=Xi_1+ph, 15jSr—1, 1SiSN.

It is well-known that there exist r— 1 positive constants
w; such that for arbitrary ¢ € P,,_5(I)

[, xa-nex="E wbio) @

We now define the collocation-Galerkin approxima-
tion to (1) by U e #}, satisfying the following equations:
LU(xi)=f(x;y), 1sjsr—1, 1=ZisN, ®
and

B(U,v)=(f,v), veHy, (6)
where x;; are Jacobi points determined above, (-, ) is
L? inner product on 7 and the bilinear form B(U, v) is

defined by

B(U, v)=(U’, v')+(aU’'+bU, v).

Now, (5) and (6) can be represented as follows in a
semidiscrete bilinear form. First, for g and ¢ defined on
each I; and ¢(x;_)=¢(x)=0, we define a discrete
bilinear form

_ ra g(xe(xip)
<g’ ¢>(_hi jgl wj Pj(l _pj) ’
and set

N
<g! ¢>= I—El <g’ ¢>i'
Next, using the unique decomposition #5=Z5D .45,
we define a semidiscrete bilinear form £(-, -) on
(A C) x A by
Z(g, v)=<Lg, v,>+B(g, v2),
where v=v, +v, such that v, € Z} and v, € #}. Then,

it is easily seen that one can rewrite (5) and (6) as the
following equivalent form.

LU, 0)={f,v), ve My Q)
Notice that if # is a solution to (1) then we have
L, v)={f,v), ve My ®)

We now state some already known estimates ([4],
[9]). Let u and U be solutions to (1) and (7), respectively.
Then, for sufficiently small A,

lu=Ullpa+hllu—Ullgs < CH ™+ Hull g, &)

lu—Ullpe < CH* ullgess, (10)

lu—U)x)| S Ch ullyz, 1<iSN-1, (11
where C is independent of .

4. Superconvergence Estimates at Jacobi Points

In this section, we show that the approximate solu-
tion defined by (7) has O(k *2) rates of convergence at
specific points (=Jacobi points) on each subinterval.
First, for y e H'(I), we define an approximation Y e
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P,, (I) of y on each I; by
(y=YY,w),=0, we P ,), (12)
and
Y(x;- )=mx;- 1), Y(x)=p(x)). (13)

Then from the well-known result of approximation
theory, we have for 1<p<oo0 and 0<Ss<r+2
ly— Y"W;(I,)éCphri+2_s”y"W;+2(I(). (14)
Next, let We .#7 be the collocation-Galerkin in-
terpolation of ye (‘;\ C*(I)) n {y(0)=y(1)=0}, i.e.
=1
W be the solution of the equation:
(=("=W"), v ) +((y—W),v3)=0,ve #5 (15)
where v=v, + v, such that v, € Zj and v, € .#}.

The following lemma is essential to our main result.
Lemma 1. Let Y and W be the solutions to (12)—(13)
and (15), respectively. If ye W'}r2(I)), 1<i<N, then
there exists a constant C, indepzndent of A, such that

W= Y)xi )l = CH 2 ylwirzay 1SJSr-1,
1Si<N.

Proof. First, for each x;, 1<i<N, we take a function
G(x;, *) € A} such that
(l—xt)éy 0§€§X )
G, é)={ ' (16)
x(1-8), xsés1
Notice that G(x, ¢) is Green’s function for the operator
L= —(d?/dx?). Then, (15) and (16) yield
(=-WXx)=((y—WY, Gdx; -))=0. an
Next, for each k, 1<k=<r—1, we choose w, e P2(I;)
such that
1, j=k,

WZ(xu)={0 vk (18)

Notice that wj:(W—Y)e P3,_,(I)) because of (17).
Hence, by (18), (4), (13), and (15) we have

e oS (W= V)i =W W= 1,
= (Wi W= Y,
=((W-Y)", w,
==Y Wy

==Y, wor (19
Thus, we obtain by (14)
[ — Y)(x)| £ Ch Ky =YY, weddl
=Cly—YlwzaplwillLecry
éChI”IIyIIw:.,“(m, (20)
where we have used the following estimates:

Using the fact that w,(x;_,;)=wy(x)=0 and the norm
equivalency of finite dimensional spaces, by (18)

I Wk"l.w(l.)_S_hzl/z Iwill L2croy
= ChyllwilliL=q,
éCh%"wZ"L”(h)

[
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SCh? max
1ssr-1

<CH:.
Therefore, we can conclude the proof.

Now we describe the main result of this paper.
Theorem 1. Let # and U be the solutions to (1) and
(5)-(6), or equivalently (7), respectively. If u e W7 (I),
then, for sufficiently small 4, there exists a constant C,
independent of A, such that

=) INSCH* |ullgry2, 1=j<r—1, 1ZigN.
Proof. Let Y and W be the solutions to (12)-(13) and
(15) with y=u, respectively. By using the inequality
ju—U)(x))l
Slw— YY)+ 1Y =) )+ I = U)x))l,
by (14) and Lemma 1, it is enough to prove
JU=W | e CH 2 |lu 2. 2D

Now, consider the following dual problem for each

yeL'(D.

|WZ(Xu)|

L*¢= g
{ ¢=y, xel, @)
$(©0)=¢(1)=0,
where L* denotes the formal adjoint operator of L,
ie. L*p=—¢"—(ap) +bo. Letn=U—Wand E=u— W,

then for any ¢ € #}, we have by (7) and (8)
(n, ¥)=(n, L*¢)
=B(n, )
=B('7’ ¢_$)+ B("’ &)
=B, ¢— )+ {B(n, §)— L(n, )} + L (&, ).

(23
We choose ¢ to be the Galerkin approximation of (22), i.e.
B(v, p—§)=0, ve H. 4

We now estimate the second and third term of the last
right haAnd side in (23). First, we decompose ¢ as 43, +¢ 2
where ¢, € Z§ and §, e #}. We note that, by virtue of
n"-¢, € P3,_;(I), (4 implies (1", $),=<n", $1)
Using (2) and (3) we have
N
IB('I’ ¢)_$(’1’ ¢)| g Z ‘-('7”; ¢1)1,+(‘1'1'+b'1, ¢l)l;
i=1
+Cn", $1>i~Can' +bn, ;)|

N
<C ‘Zl hillnllwe @l ecryy

N
=C 'Zx B lnllwsapl oo
e

S Ch)|nll =Py llwa.

Now from the well known estimates for the Galerkin
approximation (e.g. [6])

I6:lwi= Cligllwi=Cliplws.
Thus, noting that ||@| 42 =< C||{||.1, we obtain

|B(n, $)—L(n, $) = Chlnll Lol s- (25)
Next, we will estimate the third term in (23). Using
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the above decomposition of @, by (15) we have
N
L&, d)= i; @t +b&, 1>+ (@ +b¢, $,).  (26)

Here, the first term is estimated, by the results in [9],
as follows:

N N
L @' +88, 8.0 <C X hillelwaoldalliedn

N
SClElws, X 4161
SCH "2 ulyey 119wt
SO ulwa ¥l @D

Now taking notice of (17), using the similar argument
to that of Theorem 2 in [9], we can easily obtain the
following negative norm estimate:

"é"w;,‘(n)§ Chl;+2||u|lW;+z(h)'
Therefore, we have

(at'+bE, §,)=(&, (ad,) +bd,)
N
=C i;[ "f”w;‘un“&z“wi(m

N
=C iz h’i+ 2""||W'J’(t,)"¢" wiuy
=1

SCH ullwz 2l plw

SCH ullwrr2 W) - (28)
From (26) to (28) we have
|2, PN CH* 2 |ull w2l . 29

Therefore, combining (25) and (29) with (23), for suf-
ficiently small 4, we obtain the estimate (21), which
completes the proof.

5. A Numerical Example

The two point boundary value problem studied is
—u"+100u=-100, xel,
{u(0)=u(l)=0.
The exact solution is

-10 10
u(x)-—l e o10% 4 e 1 e
=10 _ 10 g0 _g-10

(30

—le_l

We adopted r=3 i.e. piecewise cubic polynomials and
divided 7 into N=32 equal subintervals. In this case,
the roots of Jacobi polynomial J;5(x) are (1+1/./3)/2.
Thus, there exist two Jacobi points on each subinterval
I, (1£i<32). Table 1 shows the results of our numerical
experiments.

Table 1. Errors of the approximate solution.

Mid points

Jacobi points Mesh points
xi—1+ph) (x;) (x;+1h)
Maximum: 0.1352E-6 0.5681E-9 0.4242E-5
Minimum: 0.6892E-10 0.1038E-9 0.6754E-7
Mean: 0.2954E-7 0.9333E-6

0.3084E-9
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One can say that these results show the validity of the
corresponding error estimates of Theorem 1, (11) and
(10), respectively.
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