Convergence Property of Aitken’s A2-Process and
the Applicable Acceleration Process

KEeN IgucHI*

We first study the convergence property of Aitken’s §2-process and then examine why Aitken’s §2-process is
not always successful in the improvement of convergence. Next, acceleration processes are proposed which are
established by modifying Aitken’s 62-process to be applicable for any problem. Then we show which acceleration
processes should be used according to the magnitude of the absolutely largest eigenvalue of the iterative matrices.
We give five examples to demonstrate the efficiency of the acceleration processes.

1. Introduction

Iterative methods are preferred for solving large sparse
systems and large scale eigenvalue problems, However,
iterative methods are not frequently used except for
these problems because of the slow convergence. In this
paper we study Aitken’s d2-process for vector-valued
sequences. As it is well known, application of Aitken’s
8%-process cannot always yield successful results in
accelerating the rate of convergence. This is main reason
why Aitken’s §2-process has not been used frequently.
Here we propose another acceleration process which is
made by modifying Aitken’s 6%-process to be applicable
for any problem.

2. Tterative Process and Its Convergence Property

In this section we describe the iterative process in
question and its property of convergence.

2.1 Iterative Process

An iterative process considered in this paper is given
as follows:

YO=CyrVyd forr=1,2,-- .1
where C is a square real symmetric matrix of order n and
d, a column vector of order n, which are independent
of iteration number r.

We assume the vector-valued sequence {y®} obtained
by iterating (2.1) converges to y.

2.2 Convergence Property of the Iterative Process

Suppose that A,, s=1, 2,- - -, n are eigenvalues of the
matrix C, where the following relation holds:

I>44> 4512 - - - 2|4, 22

and that x*), s=1,2,---,n are the corresponding
eigenvectors to A,.

Then, as well known, the general term of the sequence
{y"} is given by
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Y=y— ¥ Ax forr=0,1,---. 2.3)
s=1
Hence the error & of y® is given by
=Y 2x® forr=0,1,---. 2.9)
s=1

being defined by
eN=y—y® forr=0,1,---. 2.5)

3. Definition of Aitken’s A”>-Process and Its Convergence
Property

We first define Aitken’s 62-process and then carry out
the error analysis in applying Aitken’s 62-process.

3.1 Definition of Aitken’s A2-Process

Now we denote by y™, y™*1 and y™+ I =0, 1,- - -)
the last three iterates obtained by iterating (2.1) (m+2)
times, and by ™ the improved vector. Then, Aitken’s
&2-process is defined as follows (see for example [2], [5]):

F =y DL (D -y @D
where
w=2}/(1-1}) 3.2)
Tim | yimt D —ym e D)2y Dy 2
and the symbol |-|| denotes the square root of inner
product.

Substituting the second of (3.2) into the first, we have
the following formula:

(y(m+2)__y(m+l)’ y(m+2)_y(m+ )

w= - ™D _2ymF D ) y(m+2)_y(m))‘ 3.3)
where the symbol (,) denotes the inner product.
3.2 Convergence Property of Aitken’s A>-Process
Now putting
a,=A,/A, for s=1,2,---,n (34

and substituting (3.4) into (2.2), we have the following
relation:
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1> || 2 fas| 2 - - - 2 on]- (3.5)

Substituting (3.4) into (2.4) in case of iterating (2.1) m
times, we have the following formula:

M=y o A7x. (3.6)
s=1
Now (3.1) and (3.3) may be written by use of (2.5)
respectively as follows:
Em) = gm+2) | ((c(m+2) _ om)y k)
e — (8(m+2)_8(m+ l)’ s(m+2)__s(m+ 1)) (3 8)
- (8(m+2)_2£(m+ 1)+s(m), a(m+2)_£(m)) .

B =y — (.9

(3.8) may be written as follows with respective use of
(3.6):

where

A

n —a?)(] — 2 n n
o= 2= £ e QRN AY wo § 5 etaine))|

Now it may be considered that Aitken’s §2-process is
effective in improving the rate of convergence when the
following inequalities are satisfied: By neglecting the
small terms in size of (3.11) and (3.13), and comparing
the coefficients of x{!), we have

n
Y 02V,(Ay, o, my<1. (3.16)
5=2

Furthermore, since the second term of (3.11) must not
dominate in magnitude the first term of (3.13), we have

0,{%(11, o )+ Valpy o m) 3 0270y, 4, m)} <1
s=2
fort=2,3,---,n. (3.17)

However since it rarely happens that all of the eigen-
values of the iterative matrix C are known, Aitken’s 6%-

(3.10)

=21t=2

(3.7) may be written as follows by use of (3.6) and (3.10) (see [3]):

] . (1—a?)(1—a,l,)?
(m) — ym+2| (1) 2,.2m s 3
Em= [" {,;9’“’ a=aa—a)7 *

n(1=0f) L (—ofd) &

t=2

where
0,=Ix1/1x?) fort=2,3,---,n.  (3.12)
On the other hand in the case of iterating (2.1) (in+2)

times with the same initial value as that with which we
have obtained (3.11), (3.6) is written as follows:

n
a(m+2)= Z a;n+2).n1|+2x(s)
s=1

=Ty 2 amt2AmE 2y (3.13)
s=2

Now let us consider the conditions under which the
rate of convergence is improved whenever Aitken’s
&2-process is applied.

We introduce the following functions:

2(1—aH)(1—ad)?
Vi@, o, m)=a? -(—l—_—m

(1-a?)

V4, a, m)= |°l|'"(—ljp') .14

1—a?a?
Vit o, my=laf ()

with the ranges of

and 3.15)

(Z 93>M1(Al, -1, m)<1

=2

6,{Mz(}.1, -1, m)+My(Ay, —1, m)( Y Bf)Ml(Al, -1, m)} <1 fort=2,3,---,n.
s=2

+L "m{““' D L°

§, § orozaimar)|

t=2 s=2

m(1=a)(1—ahy)? LI o
2,2 _(l——W(l—leT-'-O(,:Zz Y, 620%a? a,)}] (3.11)

s=2

process should be an acceleration process, where (3.16)
and (3.17) hold even in the worst case such that V,(4,, a,
m), t=1, 2, 3 take the maximum values with respect to a.

We now denote the maximum value of V,(4,, a, m),
t=1, 2, 3 by Mt(4,, {, m), that is,

M4, {, m)= max V/ (1;,a,m) fort=1,2,3 (3.18)
{Ses1
where ( is a fixed value within — 1< £0.

Then the following inequalities ((3.19)(3.20)) instead
of (3.16) and (3.17) should be considered for practical
applications:

Here we estimate the magnitudes of M,(,, —1, m),
t=1, 2, 3, from the graphs of V,(4,,a, m), t=1, 2, 3,
which are shown in Figs. 1 to 8 incase of m=1and m=3,
varying the value of o with the range of —1 and 1 for
each value of 1, = +0.85 to +0.99 with the increment of
0.01.

This is the reason why the quantity of { is introduced.
As seen from Fig. 2, the value of M,(4,, {, m) becomes
extremely large in the case of {= — 1. Another accelera-
tion process will be proposed later, where the value of { is
so small in the absolute value, say, —0.40 that the mag-
nitude of M,(4,, {, m) becomes small.

Now we list the properties of M(4,, —1, m), t=1,2,3,
which will be discussed later for practical applications:

(i) When the value of A, is positive and close to unity,
the magnitude of M,(4,, — 1, m) is extremely large.

(3.19)

(3.20)
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Fig. 1 The graph of the function.
Vi@, a, 1)=a?(1 — a?)(1 —ad)?/(1 — A2} (1 — 4)?
for 1=0.85 to 0.99 with the increment 0.01 from the
lowest curve to the uppermost curve in order.
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Fig. 3 The graph of the function.
Vi, a, )=a?(1 —a2)(1—ald)?/(1 — A2X1—2)?
for A= —0.85 to ~0.99 with the increment —0.01 from
the lowest curve to the uppermost curve in order.

(ii) When the value of A, is positive, both mag-
nitudes of M,(4,, —1, m) and M;(1,, —1, m) are much
smaller than that of M,(4,, —1, m).

(iii) When the value of A, is positive and close to
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Fig.2 The graph of the function.
Vi(A, a, 3)=a’(1 —a?)(1 —ad)*/(1 — 22)(1 — 2)?
for A=0.85 to 0.99 with the increment 0.01 from the
lowest curve to the uppermost curve in order.
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Fig. 4 The graph of the function.
Vi(A, a, 3)=a®(1 —a®)(1 — ad)?/(1 — A2} (1 — A)?
for A= —0.85 to —0.99 with the increment —0.01 from
the lowest curve to the uppermost curve in order.

unity, and one or more of a,, s=1,2,-- -, n, is negative
and the absolute value is near unity, the magnitude of
M (A4, —1, m) is extremely large.

(iv) When the value of A, is negative, the magnitude
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) = 0/85~0\99
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Fig. 5 The graph of the function.
Va4, a, 1)=lai(t —a®)/(1 - 2%)
for 2=0.85 to 0.99 with the increment 0.01 from the
lowest curve to the uppermost curve in order.
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Fig. 7 The graph of the function.
V3(4, @, 1)=al(1 —a2A?)/(1 — A%)
for 1=0.85 to 0.99 with the increment 0.01 from the
lowest curve to the uppermost curve in order.

of M,(1;, —1, m) is much smaller than that of M,(—4,,
-1, m).

(v) When the value of 4, is negative, both magnitudes
of M,(4,, —1, m) and M,(4,, —1, m) are smaller than
that of M,(2,, —1, m).

)\ = 0.85~0.99
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Fig. 6 The graph of the function.
V2@, a, 3)=lal>(l —a?)/(1 —A2)
for A=0.85 to 0.99 with the increment 0.01 from the
lowest curve to the uppermost curve in order.
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Fig. 8 The graph of the function.
Vi(h, a, 3)=lal?(1 —a2i2)/(1 - 4%)
for 1=0.85 to 0.99 with the increment 0.01 from the
lowest curve to the uppermost curve in order.

(vi) The magnitudes of M,(1,, —1,m), t=1, 2, 3,
decrease monotonously as the value of m increases.

Now, (3.19) and (3.20) may be considered as the in-
equalities obtained at a certain step through the whole
calculations, where interating (2.1) (m+2) times with
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initial iterate y(®" and applying Aitken’s §2-process to the
last three iterates y™, y™*1 and y™*+2) we obtain the
improved vector $™. Successively we adopt the j™ as
initial iterate for (2.1) at the next step and repeat the same
procedures.

From (3.9) and (3.11), the ™ is given by

ym=y+ ¥ ax® (3.21)

where

~gmt2 3 g2 z».(l_“f)(l—“:lx)z
a =270 X O = 1,)?

n=0)) L (—afd]) 3

~Jm+2) 2
a4 { T &%

Here we put, for s=1,2,---,n
x): =g x®

03: = Ia:/allo.! (3.23)

and we proceed with the analysis in the same way as
(3.19) and (3.20) were obtained.

In the converging process, the quantities 6, ?=
2, 3,: -+, n vanish asymptotically as the number of steps
increases. Hence by adopting a large value of m, (3.19)
and (3.20) can be satisfied for any values of 1, and «,.
However, when in a later step the magnitude of 8, reduces
to a small value, the exceedingly large number of itera-
tions of (2.1) must be carried out more than the ade-
quate one that is required for (3.19) and (3.20) to be
satisfied. Consequently during the calculations, Aitken’s
&2-process can not be applied. Therefore in all the cal-
culations, the degree of the acceleration of convergence
rate reduces considerably. Hence we set the value of m
such that 1 <m < 3 through all the calculations. When we
adopt such a value of m, it may frequently occur that
(3.19) and (3.20) are not satisfied. However, even if the
values of ,, t=2, 3,-- -, n at a certain step are not small
enough for (3.19) and (3.20) to be satisfied, it may occur
that the value of 6, at the next step becomes small enough
for (3.19) and (3.20) to be satisfied when the magnitude
of M,(A;, —1, m) is comparatively small. When (3.19)
and (3.20) are not satisfied at a certain step, it may be
considered that the following inequality between the
terms of (3.21) hold:

la Xl <la il x") (3.24)

and at the next step, as we iterate (2.1) with the initial
iterate 7™ and take (2.2) into consideration, we have the
value of 8, small enough for (3.19) and (3.20) to be sat-
isfied.

In all the calculations where Aitken’s &%-process is
applied repeatedly, we have the two following cases
where (3.19) and (3.20) are not satisfied: (i) (3.19) and
(3.20) are not satisfied successively. This occurs when
the magnitude of M (4,, —1, m) is extremely large, and
consequently the acceleration of convergence rate is not
achieved and the converging sequence even diverges.

for t=2,3,---,n

K. IcucHt

(ii) (3.19) and (3.20) are satisfied except for a few times.
This occurs when the magnitude of M,(;, —1,m) is
comparatively small. Therefore in all the calculations, the
acceleration of convergence rate is achieved to some
extent.

It may be seen from the facts mentioned above that the
magnitude of M,(1,, —1, m) should not be made ex-
tremely large if the acceleration of convergence rate
should be gained.

Hence, by taking the properties of M,(4;, —1, m) into

m =)l —ady)?

A=A 4) @.2)

} for t=2,3,---,n.

consideration, the two following conditions (which we
refer to as ‘condition’ later on) should be satisfied:

(i) The absolute value of 4, should not be very close
to unity.

(i) Any negative value of a,, s=2,3,---, n should
not be close to unity in absolute value, for example,
larger than 0.60.

However both values of 4, and «, are inherent quan-
tities to the iterative matrix, which determine whether
the acceleration of convergence rate is achieved or not.
Hence it may be understood that it depends on the
problem to be applied whether the acceleration of
Aitken’s 82-process is successful or not.

4. Modified Aitken’s A2-Process

In this section we consider the acceleration, process
which is applied successfully for any problem.

4.1 Analysis of a Modified Aitken’s AZ-Process

We modify Aitken’s §2-process to apply successfully to
any problem.
We define for later use the polynomial p,(1) by

T (™Y

pN)= TE D" 4.1)

Here, T,(x) is Chebyshev polynomial generated by
T, ()=2xT,(x)~T,_y(x) forr=1,2,--- (4.2)

with To(x)=1 and T;(x)=x, where the variable x is de-
fined in the range |x| <1, and ¢ is a constant, such that
O<c<l.

Of all polynomials of degree r which have the value
unity at A=1, the p,(A) has the smallest deviation from
zero in the range |A| < ¢, and that is the polynomial which
increases or decreases monotonously and rapidly in the
range c<|A|<1.

The right hand side of (4.1) can be expressed in the
form

(D)= 'Zo b, A @“3)

where b, ,, t=0, 1, - -, r, are constants.
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We have the first few polynomials of (4.3) as follows:
pid)=2
P2(D)=24*=c?)/(2—c?)
P3(A)=(4A*—-3c21)/(4—3c*)
Pa(A)=(81*—8c2A2 +c*)/(8—8c2 +c*).
Graphs of the p,(4) with ¢=0.80 and the p,(1) with ¢=
0.92 are pictured in Fig. 9.

Now we define the new vector-valued sequence {z{%}
as follows:

4.4

ZP=yM fort=0,1,---,r

7= ZO bz, fork=1,2,-- @3
e

where z{" are vectors obtained by iterating (2.1) ¢ times
with initial value z{®.

The general term of the sequence {z{®} is given by (see
for example [1] and [4])

4V =y= 3 (pNO. “9)

It follows that z{—y as k— o0, since in the property
of Chebyshev polynomials, | p,(4,)) <1 for s=1, 2,---, n.

Here we assume that g is a fixed integer, such that 2<
g<n. Suppose that the value of c in (4.1) is specified in
the following way with an appropriate choice of ¢:

I>24]>43]2 - - 212l Zc2Agas] 2 - - 21l (4.7)

We can take any value for ¢ as long as the value of g is
chosen as mentioned above. Hence the value of ¢ does
not necessarily have to be specified.

From now on the degree r of the p,(4) is assumed to be
even (the reason will be mentioned later).

(4.6) is arranged by replacing A, in (2.3) by Chebyshev

e,

-0.®
1 1

-0.4

1

i

|

41.0 -0.8 -0.¢
1

Fig.9 The graphs of the functions.
Pp2(2) for ¢=0.8 and p,(4) for c=0.92
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polynomial p,(1,). Hence Aitken’s &2-process will be
applied to the sequence {z{”’}, not to the sequence
{»®}.

Then taking into consideration the property of the
p,(A) whose degree r is even, we have the following
inequality:

1>p (A1) >p(23)2 - - - 2pA)Zp ) 2| p(A)
for s=q+1,9+2,---,n. (4.8)

The quantities, p, (1) and p,(4,)/p,(1,), s=1,2,---,n
in (4.6) correspond to those of 1, and 1,/1,(=a,) in (2.3)
respectively. However, the magnitudes of p,(4,), s=g+]1,
g+2,---, n, are not in the same order as those of s.

Then we have the following inequality:

For s=1, 2,---,4,

0<p,(A) <] )
PA) 14|
0< o) Tl 4.10)

(4.9) is trivial so that we omit the proof. (4.10) can be
shown as follows: Since the value of the p,(4) increases
or decreases monotonously and rapidly in the range c<
|]A| <1, where the derivative of p,(1) with respect to A
(which we denote by p,(1)) is larger than unity in the
absolute value, that is,

[P (D] >1. 4.11)

Since the p;(1) is continuous in the range c<|1| <1, we
get (4.10), using the mean-value theorem of differential
calculus together with (4.9).

Now it is easy to see from (4.8) that the following in-
equality holds:

Fors=q+1,9+2,---,n,

1P _ pA)
Py =p Ly

Any negative value of p,(1,)/p,(,), s=q+1,q+2,---,
n, is made small in the absolute value, since the quantity
p(c)/p(A,) becomes small with a suitable choice of c.
Hence the value of { of (3.18) is chosen as follows:

4.12)

__»0O
{= ) 4.13)
Then we have for s=2,3,:--, n,
{=p(A)Ip(A)=1 4.19)

in which the value of { should be chosen larger than
about —0.40 if possible, because as can be seen from
Fig. 2, if { exceeds the said value, the magnitude of M,
(p(41), {, 3) becomes extremely large.

With a smaller value for ¢ in (4.13), the (ii) of ‘condi-
tion’ is satisfied on the one hand, but the (i) of ‘condition’
is not satisfied on the other hand with the value of p,(1,)
increasing.

With a larger value for ¢ the results are otherwise.

Hence it may be seen that there exists the appropriate
value of c.

We notice in passing that, as seen from Fig. 1, the
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magnitude of M,(p,(4,), {, 1) does not become small even
if the value of { is larger than —0.40.

4.2 Determination of the Constants

We determine the degree » of p,(1) and the value of ¢
in (4.1).

It is desirable for these values to be determined for
every problem. However all of the eigenvalues of an
iterative matrix are rarely known and it is nearly impos-
sible to have information on these values during the cal-
culations. Hence we determine in advance the values of
r and c. We first determine the value of r, since ¢ depends
on r.

The value of r should be as large as possible, but
cannot be made large, because a large value of r causes
the loss of significant value, since the approximate value
of p(4,) is required during the calculations for the
acceleration process to be applied. As seen from (4.4), the
coefficients in Chebyshev polynomials appear with alter-
nating positive and negative signs. In addition, the
degree r should be specified for the (ii) of ‘condition’ to
be satisfied.

Hence the most desirable value for the degree of p (1)
is r=4 and r=2 at best.

In determining the value of ¢, we can choose it more
freely than that of r.

With a larger value of c, the value of { in (4.13) be-
comes large, and with a smaller value of ¢, the value of
p.(1,) becomes large, and these values enlarge the mag-
nitude of Ml(Pr(Al)’ Cs m)'

Hence the value of ¢ should be properly determined in
order for the magnitude of M,(p,(4,), {, m) to be small.

We have the following results, calculating the values
of p,(c)/p,(A,)(=1{|) with r=2 and 4 by varying the value
of A, for some values of ¢:

Here we consider only the case of m=3, since the order
r of p,(4,) is limited now so that the magnitude of p,(4,)
is not desired to be small when the value of 4, is very
close to unity.

The appropriate value for ¢ may be roughly estimated
from Table 1 and Fig. 2. Here are a few examples:

c=0.80 for r=2 and ¢=0.92 for r=4.

K. IcucHt

4.3 Algorithms of Modified Aitken’s A2-Process

In this section we propose three algorithms for the
modified Aitken’s 52-process, based on the analysis de-
scribed in the preceding sections.

(i) Algorithm of AC3P1 (which is the case of m=1
and r=1, and which is one of Aitken’s §2-process).

(1) Compute yV, y® and y®, using (2.1) with
initial value y(®.

(2) Compute 7, using (3.1) with y), ) and y¥.

(3) Set y@:=jW,

(4) Repeat the above procedures from (1) to (3) until
required accuracy is attained.

(i) Algorithm of AC5P2 (which is the case of m=3
and r=2).

(1) Compute y*> and »‘®, using (2.1) with initial
value y(®.

(2) Compute z{?, using (4.5) and p,(1) of ¢=0.80 for
YO, 5 and y@,

(3) Set y(V:=2(",

(4) Compute 282, z§?, z{® and z{?, repeating the
procedures from (1) to (3), and set yV:=2z{% for t=
1,2 3,4,5.

(5) Compute 7, using (3.1) with y®, y* and y®.

(6) Set y@:=5®,

(7) Repeat the above procedures from (1) to (6) until
required accuracy is attained.

(iii) Algorithm of AC5P4 (which is the case of m=3
and r=4).

The algorithm of AC5P4 is the same as that of AC5P2
except for items (1) and (2), which are replaced respec-
tively by

(1) Compute y, @, 33 and y®), using (2.1) with
initial value y®,

(2) Compute z{?, using (4.5) and p (%) of ¢=0.92 for
YOy @) 13) apd @),

4.4 Use of Modified Aitken’s A2-Process

We show which acceleration process is to be applied
with respect to the magnitude of the absolutely largest
eigenvalue A, of an iterative matrix, taking into considera-
tion the error analysis in the preceding sections and
the numerical examination of three acceleration processes
for some problems.

(i) ACS5P2 is recommended in the case of |1,] £0.95.

Table 1 Magnitude of { for some values of c.

¢ A P2(A1) P20)fp2(A1) ¢ Ay Pa(A1) Pu)pa(A1)
0.78 0.999 0.997 0.438 0.90 0.999 0.991 0.304
0.998 0.994 0.440 0.998 0.983 0.307
0.997 0.991 0.441 0.997 0.974 0.310
0.80 0.999 0.997 0.472 0.92 0.999 0.991 0.372
0.998 0.994 0.473 0.998 0.981 0.375
0.997 0.991 0.475 0.997 0.972 0.379
0.82 0.999 0.997 0.508 0.94 0.999 0.990 0.461
0.998 0.994 0.510 0.998 0.979 0.464
0.997 0.991 0.511 0.997 0.969 0.471
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(i) ACS5P4 is recommended in the case of {4,|>0.95.
S. Numerical Results and Discussion

We give the results of numerical experiments on five
examples.

All of our computations were performed with a
FACOM M-200 at the University of Nagoya in double
precision for 16 significant decimal figures.

The convergence test

PO —yPige, i=1,2,---,n 5.

can be used to stop the iterations, where y{*’ is the com-
ponent of the column vector y®, and the initial value
¥© was taken y®=1 and (¥ =0, i=2, 3,-- -, n as the
components.

In all examples, the components of the column vector d
in (2.1) were taken d;=0.01, i=1, 2,---, n.
Example 1. The iterative matrix C is (5 x 5)-symmetric
and its elements are as follows:

13=0.27429 454
€14=0.20856 735
¢15=0.17103 900
€2,=0.43153 421
23 =0.48915 669

c34=—0.38407 153
c35=—0.25496 262
cea= 0.61246 579
Cas=—0.29594 966
css= 0.73618 402

¢y = 0.88490 413
¢32=—0.09917 199
¢13=—0.01856 947
cra= 0.00627 197
cys= 0.00928 712
ciy= 0.86642 168

5= 0.01236 315
c33= 0.87263 177
C3a=—0.06850 584
c3s= 0.01737 416
Cea= 0.87757 832
cos= 0.09634 722

c23=—0.08498 760 c;s= 0.88646 410
C20=—0.02231 328

C has the values: 1,=0.998, a,~0.992, a3;~0.902,
oy >~ 0.802, a5~0.701.

Table 2 Numerical results for example 1 with e=10-5,

Acceleration process Not applied AC3P1 AC5P2 ACS5P4
Iteration numbers 2,833 694 658 316
Computing times 55 17 17 8

(ms)

Table 3 Numerical results for example 1 with ¢=10-°,

Acceleration process Not applied AC3P1 ACS5P2 ACSP4

Iteration numbers 7,434 1,234 1,458 636
Computing times
(ms) 142 30 40 16

Our experiments show that AC5P4 converges in little
more than half the number of iterations required for
AC3P1, because the magnitude of M,(P,(0.998), {, 3) is
very small, compared with that of M,(0.998, —1, 1).
Example 2. The iterative matrix C is (5 x 5)-symmetric
and its elements are as follows:

ciy= 0.71080 472 ¢,,=0.26800 924
€13=—0.37433 313 ¢;,=0.49701 126

24=0.36186 315

C has the values: 1,=0.998, a,~0.992, ay=~0.902,
0,2>0.802 and a5~ —0.701.

Table 4 Numerical results for example 2 with e=10-3.

Acceleration process Not applied AC3P1 ACSP2 AC5P4
Iteration numbers 2,971 — 538 256
Computing times _

(ms) 57 14 7

Table 5 Numerical results for example 2 with ¢=10-9.

Acceleration process Not applied AC3P1 ACS5P2 ACSP4

Iteration numbers 7,572 — 1,018 476
Computing times
(ms) 145 — 27 12

Our experiments show that AC3P1 fails in accelerating
the rate of convergence. This is because the magnitude of
M,(0.998, —1, 1) with a5~ —0.701 is extremely large,
and furthermore the solution vector y® does not con-
verge regularly within the requested tolerance, since the
rule of convergence is different with the number of itera-
tions k being either odd or even, when a5 is negative and
its absolute value is near unity.

Example 3. The iterative matrix C is (5 x 5)-symmetric
and its elements are as follows:

cyp= 0.74811 173 ¢,5= 0.21322 794

c;,=-0.31537 003 c33= 0.57750 137

cia= 0.21949 631 c¢;,=—0.31645 032

cia= 0.16253 035 c35=—0.20405 081

c;s= 0.13637 788 c,,= 0.66927 562

¢p= 0.52472 438 c¢,5=—0.25317 770

cy3= 0.40254 903 cs5= 0.76838 690

cya= 0.28910 247

C has the values: A,=0.998, «,~0.992, a;=~0.902,
o4=0.802 and a5~ —0.401.

Table 6 Numerical results for example 3 with g=10-5,

ACSP2 ACSP4

Acceleration process Not applied AC3P1

Iteration numbers 2,971 955 538 256
Computing times
(ms) 57 23 i5 6
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Table 7 Numerical results for example 3 with ¢=10-°.

Acceleration process Not applied AC3P1 AC5P2 ACS5P4

Iteration numbers 7,572 2,836 1,018 476

Computing times
(ms) 146 66 28 12

The eigenvalues of the iterative matrix C for example 3
are all the same values except As;(=ws4,) to those for
example 1, but our experiments show that, concerning
AC3P1 the number of iterations required for example 3
is more than that for example 1. This is because the mag-
nitude of M,(0.998, —1, 1) with a5~ —0.401 is large,
compared with that of M,(0.998, —1, 1) with a5~0.701.
Example 4. The iterative matrix C is (5 x 5)-symmetric
and its elements are as follows:

ey = 0.55253 013 cp5=—0.33460 717
cia= 0.26976 551 c33= 0.26608 227

13=—0.36349 491 c;,= 0.35698 674
cia= 029873 510 cy5= 0.33771 504
cis= 022991 875 c,= 0.42316 147

cy= 0.18183 853 ¢ =—0.16999 616
Ca3= 0.46011 816 css= 0.58638 760
20=—0.48264 589

C has the values: 1,=-0.990, «,~—0.909, o=
—0.808, oy~ —0.707, a5~ —0.606.

Table 8 Numerical results for example 4 with e=10-3,

Acceleration process Not applied AC3P1 AC5P2 AC5P4

Iteration numbers 1,054 —_— 148 76

Computing times 20

(ms) — 4 2

Table 9 Numerical results for example 4 with e=10-2,

Acceleration process Not applied AC3P1

Iteration numbers 1,971 —_ 328 256

ACSP2  ACsP4

Computing times _
(ms) 38 9 6

Our experiments show that AC3P1 fails in accelerating
the rate of convergence. This is because the irregularity
of the convergence due to A, = —0.990 occurring with the
number of iterations being either odd or even.

Example 5. The iterative matrix C is (5 x 5)-symmetric
and its elements are as follows:

K. IcucH1
e = 0.36339 968 c,5= 0.01964 527
€12=—0.11152 921 c¢;3= 0.04565 506

¢y3=—0.55556 445 c¢,,=—0.08029 714
c14=—0.00102 918 c;5= 0.55509 918
¢ys= 0.43531 106 c,,= 0.79053 170
c,= 0.78446 830 c,5=—0.10659 578
cy3= 0.09994 472 c55= 0.36594 526
ca= 0.01212 678
C has the values: 1,=0.95, 0;~0.947, oy~ —0.842,
04 ~0.737, as~0.632.

Table 10 Numerical results for example 5 with e=10-3,

Acceleration process Not applied AC3P1 AC5P2 ACS5P4

Iteration numbers 142 — 58 56

Computing times _
(ms) 3 2 1

Table 11 Numerical results for example 5 with ¢=10-2,

Acceleration process Not applied AC3P1 AC5P2 ACSP4

Iteration numbers 321 — 108 116
Computing times -
(ms) 6 3 3

Our experiments show that AC3P1 fails in accelerating
the rate of convergence with the same reasons as for ex-
ample 2, and the number of iterations for ACSP2 is
nearly equal to that for AC5P4.
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