An Approach to Conquer Difficulties
in Developing a Go Playing Program

YOSHIHISA MANO*

In this paper, we show an approach to developing a Go playing program. First, we describe the method to
represent and implement the situation on a Go board. We formally define the operations for objects with a hier-
archical structure, and implement them by applying the localization and abstraction techniques to our Pascal
program. Thus we have a modularized program in which the realization parts and utilization parts are separated
only with a few interfaces. Second, we describe the usage of the Go pattern knowledge, and a human oriented non-
procedural language Gopal. A pattern in a Gopal program consists of the conditions to characterize it and the
enumeration of move candidates. We have been convinced of its descriptive capability and understandability by

writing many patterns.

1. Introduction

The game of Go is a strategic game, and we can find
analogies between the decision processes of playing a
Go move and the decision processes an individual or
organization uses to establish a policy. Although the
efficient game tree search is successfully used in many
chess programs, it is considered necessary for Go
playing programs to simulate the human’s decision
processes. This includes the application of a player’s
knowledge, the analysis, the inference, and planning
because of the complexity which is inherent in the game
of Go. We can say that this game is a good subject for
research on human decision processes[1].

First of all, a Go playing program must represent and
recognize the situation on a Go board so that it can
estimate the state of things and build its plan. In order to
recognize the situation, it must represent the various
kinds of abstraction levels with complex relationships
as human players do.

Among the Go playing programs, the INTERIM.2[2]
ranks best. It has some interesting data structures which
are models of human recognition methods, such as
lenses to monitor patterns, and webs to examine the
specific local status. It is important to be able to build
such information in the program systematically, since
the size of the complete program will become very large.

Go is also a visual game. One of the essential reasons
why humans can become good players is that they can
accumulate considerable knowledge on general and
abstract Go patterns, and have an efficient pattern
matching mechanism.

The Go program by Zobrist[3] uses templates to
represent such pattern knowledge, and has the ability
to scan templates on the board and to enumerate move
candidates with their weights. However the knowledge

*Computer Science Division, Electrotechnical Laboratory, 1-1-4
Umezono, Sakura-mura, Niihari-gun, Ibaraki, Japan.

Journal of Information Processing, Vol. 7, No. 2, 1984

is simple and inflexible and has less extensibility. It seems
difficult for human designers to modify or extend the set
of templates. As human players become experts by
learning something from their games, the Go programs
should be improved through their experiments.

In this paper we will describe, from the viewpoint of
software engineering, an approach to the first stage of
our project [4, 5, 6] to construct a Go playing program.

2. Implementation of the Representation of a Go
Situation

2.1 Representation of a Go Situation

Let a set of points P be {(x, y)|[1£x<19, 15y<19}
and a set of colours C be {Black, White, Empty}. Then
the configuration in the Go board can be represented by
a configuration function g: P»C*!. For Nc P, we can
construct a graph N* whose nodes are the elements of
N. The edge between (x1, yl) and (x2, y2) exists if
jx1—x2|+|y1 —y2|=1. 67 (c)*, where c is either Black
or White, is composed of some connected subgraphs,
and we call a set of the points in each connected sub-
graph a string of the colour c.

From the standpoint of formalizing or formulating
the Go rules or the animation of stones, it is necessary
to regard strings as the basis of the game Go. From the
standpoint of implementing Go playing programs,
however, the concepts of a higher level are necessary.

We have taken into account the ability to recognize
the situation from both the top-down and bottom-up
viewpoints for making a plan. And we have defined a
set of types of objects as elements of the board con-
figuration. Each object has a set of attributes, which
the type provides.

*1For representing the progress of the game, it is necessary to
include such information as the next turn, the inhibited point
because of ‘Ko’ and the number of captured stones. Since such
information can be easily built, we will not mention it again.

82

The types of levels higher than point and string cannot
be defined clearly. Human players cannot be clearly
defined either. Our situation is that we prepare some con-
cepts for the estimation of configuration and for strategic
planning, and provide the program with the actual
definition for those concepts. Thus, as the human
players refine their recognition of the board situation in
proportion to the improvement of their skill, our Go
program will refine the actual definition of each type in
proportion to its skill. We think that the change in
recognition because of the improvement of the pro-
gram’s skill can be regarded as the change in the number
and quality of attributes. The structure of those objects,
therefore, can be fixed.

The informal definitions of the objects except point
and string are as follows.

This is a set of strings of the same colour, whose
any two elements can be connected into a string
whenever the enemy will attack*2.
This is a set of groups of the same colour, and
it is necessary to have a strategy under the
assumption that any two elements will be
combined into a group.
This is the supposed line between two points
of the same colour or one between a point
with a stone and its nearest edge with a
distance less than four, which can be connected
whenever the enemy will attack*2.
loose linkage: This is the supposed line between two
points of the same colour or one between
a point with a stone and its nearest
edge with a distance less than four, and
it is profitable to have a strategy under
the assumption that its any two elements
will be combined into a group.
This is the relation of two strings with
the same or opposite colours.
This is the relation of two groups with
the same or opposite colours.
family relation: This is the relation of two families with
' the same or opposite colours.

group:

family:

linkage:

string relation:

group relation:

The main roles and the attributes of the Go objects
are shown in Table 1.
There are many problems in implementing such
representation. They are, for example:
(1) to efficiently process the dynamic creation and
deletion of objects in a large amount of data,
(2) the same problem as (1) for the hypothetical
configuration during a lookahead sequence,
(3) to easily append and refine the set of attributes
for improving the program. ‘
Although they are important factors, they make the
program complicated, and should be separated from the

*2More precisely, the attack is limited to one which will not
bring any damage to the enemy himself.

Table 1

Y. MaNo

The Go objects.

Objects Main Roles Main Attributes
point board configuration, colour, string name
influence from/to other potential value,
objzcts
string a unit which is alive or number of stones, ‘Dame’
dead simultaneously points, vitality
group a unit of battle, sizz, extension direction,
a tactical base vitality, opposite groups
family a strategic base, a unit for territory size,
situation estimation local-tactics for invading
linkage to surround territories, type of linkage, length,
an objzsct to attack and strength, weak points
defend
loose to surround potential type of loose linkage,
linkage territory (‘Moyo’) lzngth, strength, weak
points
string to keep information on common ‘Dame’ points,
relation hostility or cooperation contact points
group to keep information on common enemy group,
relation hostility or cooperation local-tactics on battle
family to keep information on contact area, local-tactics

relation hostility or cooperation on contact area

inherent complexity of the Go game.

For coping with such problems, one of the most
valuable rules in software engineering teaches us to
divide the problem into abstraction levels and to con-
struct the program in a hierarchical structure depending
on the structure of abstraction levels[9, 10]). Elements
such as data types and operations implemented in the
lower abstraction levels are used by modules in the upper
abstraction levels based on only their specification. Since
the interface between them can be small and formal, we
can easily validate or prove the correctness of the
program.

We have considered the representation of the situation
on a Go board as the lowest abstraction level, and we
have decided to construct the main part of the Go
program above it, strictly applying that programming
methodology. In other words, we have first formally
defined the operations for creating, deleting, merging
and scanning the objects, and other operations for
accessing and modifying the attributes of objects. Thus
we only use the specification when implementing both
the main part of the Go program and the operations on
the data structures.

Each object is modelled by a tuple with a set of
attributes. The size and structure of the tuple and the
set of attributes are determined by the type of the

object. Components of a tuple which represent the
hierarchical structure may be other objects. The structure
of tuples and attributes used in the specification is
shown in Table 2. In this table, for example, an object
of type family is a 2-tuple composed of a set of groups

An Approach to Conquer Difficulties in Developing a Go Playing Program

Table 2 The structure of Go objects.

C=({Fy, Fp,...},{Ly, L2, ...}, {LL\,LL,,.. })

Attr(C)= {Colour: (Black, White); . . .}
F=({G\,G,,...}, {FR\, FR,, .. .})

Attr(F)= {Colour: (Black, White);. . .}
G=({S), S2,...}, {GR,,GR;, .. .})

Attr(G)= {Colour: (Black, White); . . .}
S=({P,,P;, ...}, (SR, SR, .. .})

Attr(S)= {Colour: (Black, White); . . .}
P=()

Attr(P)= {Coordinate: integer x integer,

State: (Black, White, Empty); .. .}

L=({P,, Pz})

Attr(L) = {Colour: (Black, White); . . .}
LL=({P,, P,})

Attr(LL)= {Colour: (Black, White); . . .}
FR=({Fy, F.})

Attr(FR)={ ...}
GR=({G,, G;})
Attr(GR)={ ;...}
SR=({S}, S,})
Attr(SR)={ ;...}
where
C: Player, L: Linkage,
P: Point, LL: Loose Linkage,

F: Family, FR: Family Relation,
G: Group, GR: Group Relation,
S: String, SR: String Relation.

in the object and a set of family relations, and one of
its attributes is Colour which shows the colour of the
family.

The specification we have defined in this mathematical
model is a set of relations of states, before and after
each operation [11]. The specification of operations on
object family is shown in Table 3, where X/i is the i-th
component of the tuple for object X, and ' means the
value after the operation. The ‘assume’ part shows the
condition for applying the operation, and the ‘effect’
part describes the effects of the operation in the form
of the relations of the states before and after each opera-
tion. This table shows, for example, that when two
families merge (‘MergeFamily’), new family F, is
created, which replaces F; and F,, and whose first and
second component is F,/1 |J F,/1 and F,/2) F,[2—
{FR|FR/1={F,, F,}} respectively, where U and — are
the operators union and difference of sets respectively.
The specification does not mention most attributes,
since they are to be defined in the upper abstraction
levels.

2.2 Implementation of the Operations

The formal specification uses the mathematical model
on sets and tuples, and is simple and understandable as
the interface between two abstraction levels.

We have selected Pascal as the implementation
language. Pascal is a structured language, but has several
inconvenient points when using the implementation
method based on the above specification. In this section
we will describe the problem areas and our solutions.

First of all, according to the methodology, the set of

83

Table 3 Description of basic operations on Families using the
states machine model.

where
¢ means an empty set,
each of C, C, and C,, is an element of Players,
each of F, F,, F, and F; is an element of Families, and
New Xxx (InitVal) is a generator of the object
of Xxx type with the initial value InitVal.

operation Initialize ()—{Cs, Cu}
effect
Cy=NewPlayer (¢, ¢, ¢)),
C.= NewPlayer (¢, ¢, 9)),
Attr(C,, Colour)=Black,
Attr(C,,, Colour)=White.
operation CreateFamily (C)—F
effect
F=NewFamily (¢, ¢)),
C/V=CN1\J {F},
Attr(F, Colour)= Attr(C, Colour).
operation Families (C)—{Fy, F,, ...}
value C/1.
operation PurgeFamily (F)—
let C such that C/1 includes F
effect C/1'=C/1—{F}
assume F=(g, ¢).
operation MergeFamily (F,, F,)—F,
let C such that C/1 includes F, and F,
effect
F3=NewFamily ((Fa/1, F3/2)),
where
Fi/1=Fy/1 U F/1
Fs/2=F,[2\) F,/2— {FRIFR/1={F,, F2}},
(‘F,’ and °F,’ appeared in F;/2 are renamed by ‘F3’)
C/V'=(C/1—{F,, F;}))|) {F3}.
assume
Attr(F,, Colour)= Attr(F,, Colour).
operation Refer FamilyAttributes (F)—
Access-method to Attributes of F for referring
effect none.
operation ModifyFamilyAttributes (F)—
Access-method to Attributes of F for modifying
effect none.
operation ExcludeGroup (G)—
let F such that F/1 includes G
effect F/1’=F/1—{G}.
operation IncludeGroup (F,G)—
effect F/1'=F{1{) {G}
assume
for each F;, F,/1 does not include G,
Attr(F, Colour)= Attr(G, Colour).

routines which pertain to the above formal specification
should be implemented in the data management module,
and the details such as internal data structures and
algorithms should be hidden from external routines. In
fact this data management module uses several tech-
niques in respect to the management of data and
memory. The details which should be hidden include:

(1) the method to give a unique identifier to each
object,

(2) the fact that there is an array to monitor all
objects, and that identifiers are used as indices
to access the array elements,

(3) the method of always using the array when

84

tracing some relating objects, in order to support
the data sharing mechanism described in (5),

(4) the method of managing the free memory of
deleted objects,

(5 the way of realizing the effective use of space and
time by sharing as many common data as possible
for hypothetical configurations during a look-
ahead sequence.

In order to implement the data management module
according to the discipline described above, it is
necessary to use some language features for controlling
the scope of names or for describing abstract data, such
as the module facility in Modula-2[13]. Using such
language features, it is possible to make some routines
accessible from others while prohibiting the access to
the internal data common to those routines. In our
Pascal system[14] which has a module facility similar to
a Modula-2 module, we can set the special scope of
visibility of names such as variables and routines.
Thus, a set of routines can be implemented in the data
management module corresponding to the operations in
the formal specification, except that functions to extract
a set of objects such as ‘Families’ in Table 3 are realized
by pairs of functions.

On the other hand, the access to attributes, not for the
data management module but for the upper level
modules, is directly done through a pointer to an
attributes record. These pointers are obtained by invok-
ing the functions in the data management module. Two
such functions are provided for each object in order to
distinguish between the access for referring and the
access for modifying. We can append and refine the set
of such attributes independently of the data management
module, except that it is necessary to recompile the
module. We can say, therefore, that our implementation
of the use of these attributes is the abstraction of the
procedures for accessing data. Furthermore, the access
of attributes is efficient because we need only one in-
vocation of a function to obtain the pointer to the
record.

The methodology which uses the area for dynamic
data as a data base is applicative and a very useful
method for obtaining structured programs of various
applications which treat dynamic data. Access to the
data base is abstracted by using the pointer-valued
functions.

3. Non-procedural Description of Go Pattern
Knowledge

3.1 Go Pattern Knowledge

One of the main features of humans’ game tree search
is that the tree is narrow and deep but the result is
nevertheless accurate. In addition to the fact that
humans have excellent ability for accurate estimation
of a situation, we must take into account humans’
generalized and abstracted Go pattern knowledge and

Y. Mano

(a) Extension from a Friend stone

x more than 4 edge
l B

ds -——area with

d; —‘\ no stones

¥ d _i&

PO x % s ORQ (3 or 4 as its

with friend stone a ¢y e\ di | /I y-coordinate)
(3or4asits \ _d.' a’

y-coordinate)

where
di+d,’26,d,=3,dy=dy’, di’=3.
C, (3 or the y~coordinate of P as its y-coordinate),
C, (3 or the y~coordinate of P or Q as its y-coordinate) and
Cs (3 or the y-coordinate of Q as its y~coordinate).
V, (V,): the vitality of the group including P(Q),
whose value is one of 1, 2, 3 and 4
(the larger, the more vitality).
if Enemy stone on Q then
case V,<V,: Cy, C, are candidates,
case V,=V,: C,, C; are candidates,
case V,>V¥,: C, is a candidate.
if Friend stone on Q then
case V,<V,: C, is a candidate,
case V,=V,: C, and C, are candidates,
(Note that the candidate C; for V,=V,, and the candidates
for V,> V, are unnecessary because of its symmetry.)

(b) Escape of a string with 2 Dame points

area with more influence from Friend
or wide pending area

enemy stones

b .

‘xx a string with only 2 Dame points

if the string is not captured by Sicho after point a
of Friend move and then point b of Enemy move,
point a can be a candidate.

Fig. 1 Examples of Go pattern knowledge.

efficient pattern matching ability. Thus humans can
find a small set of candidates in which the best move
exists for the most cases. The generalized and abstracted
pattern knowledge could be such knowledge as 1) sym-
metric patterns are memorized collectively or not
memorized (derivable through some transformation
from some basic forms), 2) the way it is on the local
field, 3) the relations with the surroundings are described
in abstract terms, and 4) each pattern knowledge has not
a concrete configuration but a set of configurations
satisfying certain conditions.

For example, Fig. 1 shows the illustration of two
examples of such pattern knowledge*>. Fig. 1(a) is a
knowledge of the candidates for the next move on
‘Extension’ from a friend stone toward a wide side
area where any moves are not yet played. In accordance
with the surrounding conditions, C,, C, or Cj are the
potential candidates. Fig. 1(b) is a knowledge of ‘Escape’
of a string with only two consecutive ‘Dame (liberty)’
points.

It will be possible to simulate the human decision

*3These two pieces of knowledge are beginners’ ones. The higher
the rank of the player, the more cases and the more sophisticated
conditions on the surroundings he understands.

An Approach to Conquer Difficulties in De
processes, if the program has many pieces of such
pattern knowledge and uses them as the resources to
construct its lookahead sequences.

3.2 Non-procedural Language for Go Pattern Knowledge

We made a decision to utilize such pattern knowledge
in our Go program in order to enumerate move
candidates, and we have investigated that those patterns
can be characterized by the objects and their attributes
described in Section 2. Since the structure of such
knowledge is not sufficiently analyzed yet, it is much
more important for us to be able to modify, append or
exchange a set of the pattern knowledge easily.

It is required, therefore, that the description language
for such knowledge is declarative or non-procedural,
and supports the systematic and abstract description
for related, symmetric or similar patterns with some
common features. In addition to the above requirements,
the descriptive power and the executive performance is
expected to be high.

Since any existing language does not satisfy such
demands, we have designed and implemented a language
for Go pattern knowledge, called Gopal. We have
since written and accumulated such pattern knowledge
in Gopal. Each pattern knowledge written in Gopal
has two parts. One is for conditions to characterize the
pattern, and the other is for enumerating the move
candidates. A Gopal program, which has a set of pattern
knowledge, acts like a production system. However the
different order of pattern applications does not cause
different results since each application has no side
effects.

As conditions, the following should be described:

(1) the time to be applied (such as an initial stage,
‘Semeai’ (the mutual attack) and when making
eyes), the place to be applied (such as the corner
and the side), and the objects to be applied (such
as a stone, a string and a linkage),

(2) a configuration of a local field, allowing the
indefinite states,

(3) the existence of objects and the relations between
their attributes,

(4) the same conditions as (3) for the hypothetical
configuration after a predeclared lookahead
sequence.

As the declaration of move candidates, we should
describe not only the candidates themselves but also
some data, which is useful for constructing the local-
tactics such as:

(1) the reason why the moves are declared, and

(2) some numerical values whose meaning is defined
for each reason.

3.3 The Language Specification of Gopal

Fig. 2 is an example of a Gopal program which
represents the two kinds of pattern knowledge in Fig. 1.
This subsection gives the main design decisions and a
brief explanation of the main constructs of Gopal,

loping a Go Playing Program

85

referring to the example program in Fig. 2 when neces-
sary. The readers will be able to see the natural
correspondence between the human-oriented representa-
tion in Fig. 1 and the Gopal program in Fig. 2.

The amount of pattern knowledge which human
players have is probably large. The pattern knowledge
should be modularized according to the relationship
or the amount of common parts. A set of pattern knowl-
edge is described in some Gopal programs, and a Gopal
program (‘Example’, in Fig. 2) consists of some descrip-
tions of pattern knowledge (‘ExtToBoth’ and ‘Escape2’,
in Fig. 2) which should have close relations to each
other (‘ExtToBoth’ and ‘Escape?’ in Fig. 2, however,
have little relations). As mentioned later, some system-
atic pattern description can be allowed in one pattern
description.

A Gopal program can have some parameters which
are used typically to specify the particular local battlefield
where some of the patterns in the program will be

GopalProgram Example;
applied_time AnyTime;

pattern ExtToBoth;
(* Extension from Friend toward Friend or Enemy ®)
applied_time Joban;
applied_place Side;
object P,Q, C1A,C1B,C24,C2B,C2C,C3B,C3C: Point;
C1X,C2X,C3X: BoardIndex; Vp,Vq: integer;
pickup P in Friend;
condition
P.y in [3,4]
& P.x<=BoardSize-9
& EmplArea(PNT(P.x,1),5,3,P)
let QzNear(P,Range(PNT(P.x+6,1),10,4),Both) end_let
& Q.y in (3,41;
candidate
let C1XzP.x+3; C2X=(P.x+Q.x+1) div 2; €3X=Q.x-3;
C1A=PNT(C1X,P.y); C1B=PNT(C1X,3);
C2A=PNT(C2X,P.y); C2B=zPNT(C2X,3); C2C=PNT(C2X,Q.y);
C3B=PNT(C3X,3); C3C=PNT(C3X,Q.¥);
Vp= Vitality(GrpHsme(P)); Vq=Vitality(GrpName(Q)) end_let
subpattern
condition State(Q)=zEnemy;
candidate
subpattern;
condition Vp < Vg
candidate with (Kakucho 65.0,1) C1A,C1B, C2A,C2B,C2C;
end_subpattern;
subpattern;
condition Vp = Vq
candidate with (Kakucha 65.0,1) C2A,C2B,C2C, C3B,C3C;
end_subpattern;
subpattern;
condition Vp > Vq
candidate with (Kakucho 65.0,1) C3B,C3C;
end_subpattern;
end. :ubpattern;
subpattern
condltion State(Q}=Friend;
candidate
subpattern;
condition Vp <
candidate with (Kakucho,65 0,2) C14,C18B;
end_subpattern;
subpattern;
condition Vp =
candidate with (Kakucho 65.0,2) C1A,C1B, C2A,C2B,C2C;
end_subpattern;
end_subpattern;
end_pattern;

pattern Escape2;
(* Escape of a string with 2 Dame points #)
applied_place AnyPlace;
object P: Point; FS: Stringld;

IsSicho: Boolean; Pot,Dens: real;
pickup P suchthat Match(1,'0..+/

0..4');
condition
let FS=StrName(P); Pot=Potential(PNT(P.x+3,P.y));
Dens=Density(PNT(P.x+3,P.y)) end_let
NoDame(FS)=2
& ((Pot>-0.2) and (Pot<0.5)) or (Dens<0.2)
modifying [StrDatal supposing PNT(P.x+2,P.y),PNT(P.x+1,P.y)
let IsSicho= EmpPSet(SlchoE(FS)) end_let
& not IsSicho
candidate thh (Nige,30.0,FS) PNT(P.x+2,P.y)};
end_pattern;

end.

Fig. 2 An example of Gopal program.

86

applied, although this facility is not used in Fig. 2.

For all or a part of descriptions of pattern knowledge
in one Gopal program, the time and the place when and
where they are applied are explicitly designated. It is
also explicitly designated whether each pattern descrip-
tion should treat the symmetric patterns (4 patterns for
only the rotations, or 8 patterns for the rotations and
the reflections). They are written in parts of applied_time
and applied_place.

The names, which are bound with values or objects
such as of integers or strings, are declared in the object
declarations. Each name must be bound just one time in
order to avoid the introduction of the concept ‘order of
execution’. The names, which are bound in for_each
phrase or for_some phrase described below, are only
exceptions. The translate-time constant names may be
bound in their declarations for the simplicity of des-
criptions and the possibility of optimization.

A description of pattern knowledge is mainly
composed of a condition part in which a relational ex-
pression to characterize the pattern is written, and a
candidate part in which some move candidates for the
local fields satisfying the relation are listed.

A relational expression to characterize the pattern is
a logical expression, and several built-in data types and
many built-in functions are provided in Gopal in order
to increase the descriptive power. For example,
‘Colours’, ‘Point’ and ‘PointSet’ are built-in data types
of Gopal, and many Gopal functions whose values are
of Colours type, Point type, PointSet type and so on are
also provided.

In Fig. 2, for example, a built-in function PNT(x, y)
returns a Point type value with the given coordinates;
a Boolean function EmplArea(P, dx, dy, Q) returns true
if there are no points with stones except the point Q in
the rectangle defined by two points P and (P. x+dx,
P. y+dy)**; a Point type function Near(P, R, C)
returns a point with a stone of colour C, which is in the
set of points R and is the nearest to the point P; a
PointSet type function Range(P, dx, dy) returns a set
of points in a rectangle defined by a given point and a
given size; GrpName(P) returns the identifier of the
group which includes the point P; and Vitality(X) returns
an approximate value of the vitality of an object X (the
accuracy is not defined in Gopal).

It is often necessary to examine whether some condi-
tions are satisfied for each point or for some point in
the data of PointSet type. Gopal has such facilities in the
form of for_each and for_some phrases respectively (the
syntax is: “for_some” (or “for_each”) name “in” PointSet-
type-expression “‘("’ logical-expression **)”’)**. The name
after for_each or for_some is bound with each point in
the data of PointSet type in the phrase, but its value is
undefined outside of the phrase.

The syntax of Gopal logical expressions is similar to

*4P. x and P. y means the x and y coordinates of a point P
respectively.

Y. Mano

those of Pascal with an additional operator ‘&’, and
‘&’ has the same meaning as and except for the efficiency.

The candidates, which are the results of application
of the pattern knowledge, are written in with phrases
(the syntax is: “with” *(” intention“,” a-sequence-of-
numerical-data ‘)" a-sequence-of-candidates) with an
intention, a weight, and some numerical data whose
meaning is defined for each intention. The candidates
are those for local battlefields, and the modules of higher
levels which have some global plans decide which one
of the candidates should be moved in the real match.

There may be various derivative patterns with addi-
tional conditions from a basic pattern. In Gopal,
subpattern parts, in which there exist a condition part
and a candidate part, and which may be nested, are
provided in order to write such derivative patterns
systematically.

The names declared in object declarations are used to
be bound with a value and to refer to that value else-
where. To bind a name with a value, a let phrase is used
(the syntax is: “let”” name ‘="' expression “;”. . . “end_
let”). As described above, the binding for each name
occurs only once in the text. A let phrase may be placed
rather freely in the condition part and candidate part.

Human Go players often examine some values or
relations in some hypothetical configurations after
rather straightforward lookahead sequences predictable
for the pattern. In order to support this tactic, Gopal
has supposing phrases (the syntax is: “modifying” in-
formation-class “supposing” lookahead-sequence let
phrase). After the word medifying, the class of necessary
information in the hypothetical configuration is specified
for the efficient lookahead. The supposing phrase in Fig.
2 is one to certify in the hypothetical configuration,
that after two moves it will not be captured by ‘Sicho’.

It must take much time to search the patterns in the
configuration which satisfy given conditions. A pickup
phrase (the syntax is: “pickup” name “in” object, or
“pickup” name ‘“‘suchthat” logical-expression) specifies
a particular object, which is used at the first stage of the
pattern matching. By restricting the range to be searched
for pattern matching, the process can be done efficiently.
A special function ‘match’, which is used only in pickup
part, gives a specific local configuration, where ‘O’ in a
character string means a point with a friend stone, ‘X’
an enemy, ‘.’ a vacant, ‘¢’ any point, ‘+’ a friend or a
vacant, ‘-’ an enemy or a vacant, ‘/’ the end of a row, and
so on. The first parameter 1 of ‘match’ in Fig. 2 means
that the first point in the string is named P.

3.4 Gopal Implementation

A Gopal program is translated into a Pascal external
program (a compile unit which is invoked from others)
by a Gopal translator. The Pascal programs are com-
piled using a common environment file. This environ-
ment file includes the definitions of the constant names

*3¢3” means the terminal symbol a.

in De

An Approach to Conquer Difficulti
and the type names which are commonly used, and this
file will be linked together with other modules such as
Go main module, the data management module and
the Gopal library. The Gopal translator is a one-pass
recursive descent translator written in Pascal.

The whole structure of our Go program is described
in Fig. 3, including the data management module and
not yet implemented parts.

Fig. 4 shows a part of the names of pattern knowl-
edge descriptions which are implemented in Gopal,
and an example of their execution. Fig. 4(a) is a brief
explanation of the patterns, Fig. 4(b) is a Go board con-
figuration and shows the potential candidates after an
execution of the Gopal programs, and Fig. 4(c) is the
trace of an execution of Gopal programs. In the Fig.
4(c), the number in ‘pick’ field is the number of times
when the pickup condition is satisfied, the number in
‘cand.’ field is the number of candidates which the
pattern has listed, and the number in ‘msec’ field is the
CPU time in milliseconds.

(our Go program)

Go main module

data management module

data base for Go board
configuration

status estimation routines

candidates enumeration
modules
Gopal library
Planning module intention data base

l Plan management module local tactics data base l

l expert routines -|

= Gopal programs

Fig. 3 The structure of our Go program.

(a) patterns in Gopal programs

GopalProgram Fuseki;
pattern AkisumiSen; : First move to empty corner

pattern HShimari; : Shimari from Hoshi
pattern KShimari; : Shimari from Komoku
pattern SShimari; : Shimari from 3-3

: Kakari to Hoshi

: Kakari to Komoku

Kakari to 3-3

Extension from 3rd line
Extension from 4th line
Extension from Friend

: Tsume toward Enemy

: Upward extension
pattern Inv33; : Uchikomi of 3-3
pattern InvMiddle; : Uchikomi
GopalProgram Battle;
pattern Capture; : Capturing Enemy string

pattern UnCapture; : Escape of threatened string
pattern Threat; i Ate

pattern Tsugil; : Tsugi of Kosumi

pattern Tsugi2; : Tsugi of Ikken

pattern Tsugi3; : Tsugi of Niken

pattern Cutil; : Kiri of Kosumi

pattern Cut2; : Kiri of Ikken

pattern Cut3; : Kiri of Niken

pattern PostTsukel; : Coping with downward Tsuke

pattern PostTsuke2; : Coping with horizontal Tsuke
pattern PostTsuke3; : Coping with upward Tsuke

pattern Kakel; : Kake to a string with 2 Dames
pattern Kake2; : Kake to a string with 3 Dames
pattern Esct; Escape of a string with 2 Dames -1
pattern Esc2; Escape of a string with 2 Dames -2
pattern EscU; : Upward Escape

SumiAttack; : Attack to a corner

= = GopalProgram Yose; =
pattern Suberi; : Invading by Suberi

pattern HKakari;
pattern KKakari;
pattern SKakari;
pattern Ext3;
pattern Extd4;
pattern ExtB;
pattern ExtE;
pattern ExtU;

loping a Go Playing Program

pattern HaneYose;
pattern KosumiYose;
pattern OsaeYose;

: Yose by Hane

: Yose by Kosumi

: Yose by Osae

[TUCONES B RN o B NS PV S I

Fig. 4

87

(b) A Go board configuration

X: Black's move candidate

W ECUDEFSHIJEKELMNOPQRS
rv"TV‘V"TTV‘YV?"V‘TT‘P‘
r+++++¢+++f4~¢++OX+4
PaX bt e 0.0+ + @+
beOOOX¢XQf++¢+°+¢4
rOO@@@Qf R I I IR T I I e
xORDOOOX + + + + + + % + Q@+ o+
v@g0@+00#+40++++++4
"@OOO""*”*’*’**"
ro@@*++¢v++ooti¢f&4
rXf0++¢++o+¢¢+X0°+4
r+O@+oo¢¢¢¢¢++¢0‘+01
I R R R T rararey
LN I R B R R TR D T T SR S S X + ‘:D + + 4
o+ (:) LR B R T I TR T R R |
X v+ (:)(j)(:)(:) + o+ E X+ o+ o+ q:b + 4
o+ Q:B .+ d:be:beg}e:} D R I R R SV
v+'+@¢¢+4++00»000+4
F o+ 4+ 2+ 4+ e >(+ 4+ + + 4
V44 4 s ks e s 4 b s s aoaoaoaoaa

(c) An example of the execution of the Gopal patterns
for the Go configuration (b)

(Fuseki)
AkiSumiSen/ 4 pick/ 0 cand./ 16 msec
Ext3 / T4 pick/ 1 cand./ 87 msec
Exty / T4 pick/ 0 cand./ 58 msec
ExtB / 74 pick/ O cand./ 34 msec
ExtE / 76 pick/ 0 cand./ 54 msec
ExtU / T4 pick/ 5 cand./ 86 msec
HKakari / 8 pick/ 0 cand./ 20 msec
HShimari / 8 pick/ 0 cand./ 24 msec
Inv33 / 4 pick/ 1 cand./ 0 msec
InvMiddle / 76 pick/ 1 cand./ 59 msec '
KKakari / 8 pick/ 0 cand./ 14 msec
KShimari / 8 pick/ 0 cand./ 30 msec
SKakari / 8 pick/ 0 cand./ 16 mzec
SShimari / 8 pick/ 0 cand./ 0 msec
{ememe 672 msec
(' Battle)
Capture / 13 pick/ 0 cand./ 19 msec
Cut1 / 3 pick/ 3 cand./ 95 msec
Cut2 / 1 pick/ 0 cand./ 37 msec
Cut3 */ 2 pick/ 0 cand./ 51 msec
Esci / 37 pick/ 0 cand./ 39 msec
Esc2 / 3 pick/ O cand./ 54 msec
EscU / 37 pick/ 0 cand./ 42 msec
Kake1 / 1 pick/ 0 cand./ 76 msec
Kake2 / 0 pick/ 0 cand./ 59 msec
PostTsukel/ 0 pick/ 0 cand./ 49 msec
PostTsuke2/ 0 pick/ O cand./ 44 msec
PostTsuke3/ 0 pick/ 0 cand./ 33 msec
SumiATTACK/ 4 pick/ 0 cand./ 10 msec
Threat / 13 pick/ 0 cand./ 53 msec
Tsugil / 0 pick/ 0 cand./ 35 msec
Tsugi2 / 0 pick/ 0 cand./ 44 msec
Tsugi3 / 0 pick/ 0 cand./ 78 msec
/ 13 pick/ 0 cand./ 20 msec
m

UNCapture
< 1095 msec

(Yoseru)

HaneYose / T4 pick/ 1 cand./ 42 msec
KosumiYose/ T4 pick/ 4 cand./ 38 msec
OsaeYose / 1 pick/ 1 cand./ 57 msec
Suberi / 74 pick/ O cand./ 55 msec

2 m

(mmmme 46 msec

cand. intention weight values pattern

P8 (Kakucho, 60.0 1 0 [0) /Ext3

M15 (Kakucho, 58.0 2 0 0 0) /ExtU

N13 (Kakucho, 50.0 2 0 0 0) /ExtU

N6 (Kakucho, 58.0 2 0 [0) /ExtU

010 (Kakucho, 50.0 2 0] 0) /ExtU

010 (Kakucho, 58.0 2 0 0 0) /ExtU

C3 (Shinryaku, 40.0 2 0 0 0) /Inv33

I4 (Shinryaku, 43.7 74 0 0 0) /InvMiddle
G4 (Kiri, 25.0 6 200 0 0) /Cut1

66 (Kiri, 25.0 200 136 0 0) /Cut1

cu (Kiri, 25.0 30 6 0 0) /Cut1

A6 (Yose, 26.0 0 0 0 0) /HaneYose
B10 (Yose, 45.0 0 o 0 0) /KosumiYose
N18 (Yose, 45.0 [[0 0) /KosumiYose
R16 (Yose, 45.0 0 0 0 0) /KosumiYose
B15 (Yose, 45.0 0 0 0 0) /KosumiYose

(Yose, 36.0 0 0 0 0) /OsaeYose

Examples of patterns in Gopal programs and their
execution.

88

4. Concluding Remarks

In this paper we have described an approach to
conquer the difficulties in developing a Go playing pro-
gram. We have separated the difficulties on programming
technique from ones the game of Go inherently has, and
we have tried to reduce the difficulties in the first class.

In the first half of this paper, we discussed the formal
specification of the interface between the data manage-
ment module and other upper level modules. Using this
interface, we have hidden the details in the data manage-
ment module. This modularization technique is known
as information hiding or data abstraction, and we have
strictly applied this technique by using our Pascal system
which supports such module structures. The description
of the formal specification, however, is merely an in-
formal document. Although there exist some modern
languages such as Modula-2 and Ada which allow users
to write both definition and implementation modules,
the definition does not include full specification. A
language in which we can describe the formal definition
and the implementation, is definitely required for such
an approach.

In the last half of this paper, we have discussed a
non-procedural language for the Go pattern knowledge
and its processor. The Gopal programs are also human-
oriented, and it is easy to write and update a set of the
pattern knowledge in this language. This is one of the
examples which show that the non-procedural language
designed for a specific application works very well. It
would be better if we were able to write both efficient
procedures and non-procedural statements in the same
language.

Our Go program is now in development and we still
have difficult problems to solve such as the estimation
of the global state of things, and the creation of plans
based on a strategy. These are, however, the problems
Go inherently has, and we hope that we have already

Y. MaNo

had a breakthrough. Then we will be able to attack and
solve these problems using routines developed up to
now by applying our approach, such as routines in the
data management module, the Gopal library, expert
routines and those to approximately estimate the board
status.

The author wishes to thank the members of our Go
project for many helpful discussions. The author also
thanks Mr. Takamune who has assisted in im-
plementing Gopal.

References

1. SANEcHIKA, N. Recent Development in Game Playing
Programs, Information Processing 20, 7 (July 1979), 601-611 (in
Japanese).

2. REerrMaN, W. and WiLcox, B. The Structure and Performance
of the INTERIM. 2 Go Program, 6tk IJCAI (1979), 711-719.

3. Zosrist, A. Feature Extraction and Representation for
Pattern Recognition and the Game of Go, PhD. Thesis, University
of Wisconsin, 1970.

4. SANECHIKA, N, et al. Notes on Modelling and Implementation
of the Human Player’s Decision Processes in the Game of Go,
Bul. Elsctrotech. Lab., 48, 1981.

5. SUGAWARA, Y. and SANECHIKA, N. A Method to Recognize
the Strength Situation in Go Program, 23th National Conf. of IPSJ
(Oct. 1981) (in Japanese).

6. SANECHIKA, N. Programming the Decision Processes in Go,
Tech. Rep. of IPSJ (Jun. 1982) (in Japanese).

7. BensoN, D. B. Life in the Game of Go, Inf. Sci. 10, 1 (1976),
17-29.

8. Benson, D. B. and SouLE, S. P. Legal Go: A Formal Program
Specification, Part 1, 2, 3, Washington State Univ. CS-78-45, 46, 47
(1978).

9. DuksTRA, E. W, Notes on Structured Programming, in
“Structured Programming’’ Academic Press, 1972.

10. Liskov, B. Programming with Abstract Data Types,
SIGPLAN Notices 9, 4 (Apr. 1974), 50-59.

11. PaARrNAs, D. L. A Technique for Software Module Specifica-
tion with Examples, Comm. ACM 18, 5 (May 1972), 330-336.
12, Jensen, K. and WirTH, N. Pascal—User Manual and Report,
Lecture Notes in Comp. Sci. 18, Springer Verlag, 1974.

13. WirTH, N. Modula-2, ETH, Institut fur Informatik, 1980.
14. Mano, Y. A Technique for Extending Pascal and an Ap-
plication to Pascal with Module Structures, to appear in Trans.
of IPSJ (in Japanese).

(Received May 2, 1983; revised March 5, 1984)

