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A method is proposed for automatic diagnosis of a dynamic system based on a knowledge engineering tech-
nique. Basically, the method uses only knowledge about a system decription and does not require any knowl-
edge concerning failure causality. Inference is made in each of the four diagnostic steps: i) expectation value com-
putation, ii) suspects computation, iii) suspects discrimination using observable data and iv) suspects discrimina-
tion by test generation. One of three inference procedures is used where appropriate in selection: forward chain-
ing, backward chaining and resolution. This method can diagnose in principle all kinds of failures that are log-
ically diagnosable if the system description is appropriate. The capability of the method is demonstrated by an
application example to a nuclear reactor feed-water system.

1. Introduction

A compelx power plant should be equipped with aids
to support safe operation and improve availability. In
anomalous situations, the plant operators must observe
and interpret many signals displayed on control panels
and make appropriate decisions as to what is wrong and
how to correct it.

A well-established approach for identifying anomaly
causes in a dynamically changing system is to use the
pre-analyzed scenario of event propagation. A typical
example is the Disturbance Analysis System (DAS)
based on the Cause-Consequence Tree (CCT) [1).
DAS has useful pre-alarming and diagnosis capabilities
that can cover a variety of foreseen circumstances. Its
efficiency comes from its use of a set of explicitly
enumerated faults, but biulding a CCT that covers
almost all possible faults is a complicated and difficult
task.

Several groups [2][3][41{5][6][7] have proposed a new
approach which utilizes the knowledge engineering
technique. A main feature of this approach is its
capability of tracing a logical chain of events, which is
constructed by a set of rules incorporated in a
knowledge base. Application to plant diagnosis offers
the following advantages:

1) Effective integration of information

Complex phenomena that propagate through various
plant components can be represented in terms of logical
event chains.

2) Easy system management

The diagnostic ability can be easily improved by
modification of the knowledge base.
3) Excellent man-machine interface

It can explain its line of reasoning in reaching a con-
clusion.

4) Use of heuristic knowledge
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Know-how that is heuristic and has been accumulated
through the experiences of experts can be utilized in pro-
blem solving.

The reasoning process, however, is one of searching
the state of classifications, based on knowledge of the
causal association between observable symptoms and
possible causes. In this regard, the approach requires an
explicit expression of causality: cause and result rela-
tionship. What is not expressed in this knowledge is out
of the scope of the diagnosis.

A second new approach that has been put forward is
to use knowledge about a system description, i. e. in-
tended structure and expected behavior. Application to
computer hardware diagnosis shows that the algorithm
can work directly from information about a system
description without requiring causality relationship
[8191110].

These two approaches are characterized in that the
former uses kowledge of anomalous situations, whereas
the latter uses knowledge of normal situations. The
former is more direct and hence more efficient but, as
mentioned above, all anomalous situations must be
covered for the diagnostic capability to be complete.
The latter is not as efficient as the former because it is in-
direct. However, as it is much easier to describe how the
system should work if functioning normally, the latter
is more powerful.

This paper introduces an attempt to extend the se-
cond approach which, so far, has been limited to com-
puter hardware diagnosis, to a diagnostic problem in a
dynamic system that has feedback loops. The algorithm
uses a general inference procedure to i) compute expec-
tation value, ii) compute suspects, iii) discriminate bet-
ween the suspects using observable data and iv) further
discriminate between them by generating tests. The ad-
vantages listed above for the first approach also apply
to this approach.

Section 2 defines a problem to be solved, and section
3 presents some examples of system description. Section
4 describes the diagnostic method. Section 5 sum-
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marises application results for a power generating
plant.

2. Diagnosis Problem

The problem to be solved can be stated simply as
follows: [Given a symptom indicating an anomaly
through an observable signal from some detector at
time, identify the faulty component(s) that caused the
symptom.]

The main differences between this diagnosis and that
of computer hardware are:

1) The system is dynamic, i. e. the observable signals
are time dependent.

2) The system forms feedback loops, i. e. input from
some components is affected by its own output as well
as that of other components, with some time lag.

3) Many of the important signals are observable.

4) Some of the important components are redundant.

The first two make the problem more difficult than
that for computer hardware diagnosis. The time
dependency of the system must be appropriately mod-
eled. Feedback nature requires elaborate control for
inference to work correctly. The last two make the
problem easier. However, there are many variables that
are not sensored and prediction by model is required
for these variables. Redundancy comes from a safety
requirement. This information can be used to guide
inference control.

3. System Description

The method described here requires data giving a full
description of the plant to be analyzed. The degree of
sophistication of the behavior description is determined
by its capability of distinguishing a normal state from
an abnormal one. The knowledge representation used
for system description is based on MRS [11]. Its syntax
is the same as that of predicate calculus. In the follow-
ing description, ‘‘if*’, ‘‘and’’ and ‘‘not’’ are logical sym-
bols and some predicate symbols, function symbols and
relation symbols are introduced to describe a dynamic
system.

3.1 Structure Description

The system structure is specified by describing com-
ponents, interconnetions and states.
i) Component description
Each component is designated by an atomic name
and its type is specified by using a function symbol
““type’’. The following assertion example declares that
components A, B, and C are a sensor, selector and
pump, respectively.
(type A Sensor)
(type B Selector)
(type C Pump)
if) Connectivity description
Each component has zero or more input and output
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ports. These ports are designated using function sym-
bols input and output. The connectivity relationship bet-
ween components is specified by using a relation symbol
“conn’’. The following example declares that the first
output of pump C is connected to the second input of
sensor A.
(conn (output 1 C) (input 2 A))
iii) State description
Some components need state information. This infor-

mation refers to on/off state, observability, redun-
dancy, switching condition, etc. and is represented by
introducing appropriate predicate symbols and relation
symbols. The following assertions declare that the state
of the first input of sensor A is on, the first output of
the selector B is observable, pumps C and D are redun-
dant, and the first input of selector B is switchable,
where symbols starting with a ‘‘$*’ represent variables.

(value (input 1 A) on)

(observable (value (output 1 B) $x))

(redundant C D)

(switchable (value (input 1 B) $x))

3.2 Behavior Description

The system behavior is specified by describing the rela-
tionship between input(s) and output(s) of each compo-
nent in terms of rules. Behavior of a component in a
dynamic system is usually described by a differential
equation, which is made discrete by a set of arithmetic
expressions.

i) Dynamics description

The behavior rules relating input(s) to output(s) are
denoted as forward rules and those relating output(s) to
input(s), backward rules. Simulation of the system
behavior requires use of only the forward rules, but in-
ference for diagnosis requires both.

a) Forward rules

Two examples are given. The first describes sensor
behavior and the second, controller behavior. OK
means that a component is not faulty. A predicate sym-
bol “‘true’’ is introduced to represent time varying data.
The statement (true A B) means that A is true in situa-
tion B.

The first rule states that the sensor is a two-input,
one-output device: one input being an on/off switch
and the other sensing a quantity mi, and that if the
sensor is on and functioning normally, the output
mo is mi/mr, where mr is a scale factor. This is true for
every ¢.

(if (type $x Sensor)

(if (and (OK $x)
(value (input 1 $x) on)
(true (value (input 2 $x) $mi) $¢)
(value (rated $x) $mr)
(= $mo (/ $Smi $mr)))
(true (value (output 1 $x) $mo) $1)))

The second rule is more complicated. The output of
the controller mo at time ¢ is computed by a function f
that requires 6 variables, one of which is the output mi
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itself at the previous time step s.
(if (type $x Controller)
(if (and (OK $x)
(true (value (input 2 $x) $i) $s)
(true (value (input 3 $x) Sws?) $s)
(true (value (input 4 $x) Swml) $s)
(true (value (output 1 $x) $m/) $s)
(value (input 1 $x) $/d)
(=8t (+8%s1)
(true (value (input 2 $x) $/0) $9)
(= $mo (f $mi $1i $lo $1d SwA Swml)))
(true (value (output 1 $x) $mo) $¢)))
b) Backward rules
The following rule corresponds to the first example of
the forward rule given above.
(if (type $x Sensor)
(if (and (OK $x)
(true (value (output 1 $x) $mo) $1)
(value (input 1 $x) on)
(value (rated $x) $mr)
(= $mi (* $mo $mr)))
(true (value (input 2 $x) $mi) $r)))
iil) Connectivity description
A set of rules is needed that handles the connectivity
relationship. These rules state that if two ports are con-
nected, they always have the same value.
a) Forward connectivity rule
(if (and (conn $x $y)
(true (value $x $x) $1)
(true (value Sy $2) $¢1))
b) Backward connectivity rule
(if (and (conn $x $y)
(true (value $y $2) $1)
(true (value $x $z) $1))

4. Diagnostic Method

An anomaly is detected by observing that some
sensor output gose beyond its allowable range. The
real cause may lie in a component that is not directly
related to the sensor where the anomaly is first detected.
By the time of detection, the anomaly may have prop-
agated through various components and affected many
sensor outputs although they were still within their
allowable ranges. The diagnosis consists of the four
steps described in detail in the following subsections.
In each step, diagnosis is realized by one or a combina-
tion of the three inference procedures: forward chain-
ing, backward chaining and resolution. The resolution
procedure is necessary to fully mechanize the diagnosis
made by the mixed use of the forward and backward
behavior rules. Linear input strategy is adopted because
of its ease to implement a control mechanism.

4.1 Computation of Expectation Value

Diagnosis starts when a symptom does not match
what is expected. It is, therefore, necessary to estimate
the expected value of the sensor where an anomaly is
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detectd. To do this, plant dynamics has to be simulated
starting from some initial state. It is not necessary to
return to a state in which all components were normal
because the input and output relationship of a normal
component is consistent regardless of the value of its in-
put(s). It is sufficient, in a dynamic system having feed-
back loops, to go back at least to the time #-4 and use a
set of consistent observable data, where ¢ is the time of
anomaly detection and 4 is the maximum difference in
time between each observable output in solving the
dynamic system having feedback loops by discrete time
periods. In other words, 4 is the minimum time needed
for an erroneous signal to propagate through all the
components at least once before it is detected by some
sensor. Inference is made in two steps.

i) Inference to obtain unobservable data at time 7-4
using the observable data at time -4

Forward chaining is applied starting from the obser-
vable data by using the structural knowledge backward
behavior rules, and backward connectivity rule assum-
ing all components are normal. Inference control is a)
not to conclude the once instantiated data by previous
inference and b) not to go back further than the time ¢-
A. The first one is necessary to get a set of consistent
data if there are more observable data than minimum
necessary to start simulation.

ii) Inference to obtain the expectation value of the
anomaly detecting sensor at time ¢ using the unobser-
vable data obtained in step i)

Forward chaining is applied starting from the
estimated unobservable data using structure data, for-
ward behavior rules and forward connectivity rule. In-
ference control is to stop when the expectation value is
obtained.

4.2 Computation of Suspects

Using the fact that the symptom is not the expected
observation, all components that can logically be
responsible for it are picked as supects. Resolution is
applied starting from the expectation violation at time ¢
until reaching the estimated unobservable data at 7-4
using the structure data, forward behavior rules, and
forward connectivity rule. All rules are converted to
conjunctive normal from. The control mechanism
employed to pick the suspects is to designate in advance
the statements for which further inference is not re-
quired. These statements are an OK statement for each
component.

4.3 Discrimination of the Suspects Using Observable
Data

It is possible to discriminate between the suspects ob-
tained in the previous step by checking the consistency
of the available data. Here, consistency means that the
observed output(s) can be expected from the observed
input(s) using knowledge about a system description.
The knowledge required in this step is the structure
data, forward and backward behavior rules, and for-
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S1 : Scnsors

..A - F.. : Suspects

Fig. 1 An example of suspect discrimination by observable data.

ward and backward connectivity rules. Inference is
made in two steps.
i) Identification of which observable data to use

This step finds a set of observable data that are re-
quired to identify the anomaly of one more com-
ponents. Symbolic simulation is performed by resolu-
tion starting from the forward behavior rule of any one
of the suspect candidates obtained in 4.2. Backward
chaining can be applied using heuristic knowledge to
select a component from which to start inference for
greater efficiency. Because the feedback nature of the
system necessitates mixed use of both forward and
backward rules, inference should be controlled to avoid
getting into an infinite loop. This can be achieved by
preparing a) repetition checks to rule out an infinite
loop in which the process of proving a statement in-
volved its own proof and b) tautology checks to rule
out an infinite loop between input and output within a
component. In addition to these controls, the OK and
Observable Statements are designated as statements for
which further inference is not required.

In Fig. 1, for example, starting the resolution from
the rule of component E, the outputs of sensors S1, S2
and S3 are picked up as the data that can be used to iden-
tify an anomaly in the components C, D and E. The sen-
sors can also be the suspects in this case. This process
is repeated until none of the suspects can be exonerated
by the consistency check with the observed data. In the
Appendix, the detailed inference process of this simple
example is described in part along with the system de-
scription used.

ii) Evaluation of observable data

Numeric simulation is performed for each set to
check whether observable data are consistent with each
other. If they are inconsistent, at least one of the com-
ponents for that set is faulty.

4.4 Discrimination of the Suspects by Test Generation

It is possible to further discriminate between suspects
by placing single fault and non-intermittency assump-
tions for each set that has been selected in 4.3 if a mean-
ingful test can be generated and if it is successful. Use
of the redundant component or valve open/close can be
realized in plant diagnosis. In order to infer the test
form logically, knowledge about the ability to modify
the system or components is needed. This knowledge,
supplied as state description in 3.1 is used in selecting
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Si : Sensors
E : Selector

Fig. 2 An example of suspect discrimination by test generation.

the component to start inference. Inference is made in
two steps.
i) Generation of tests
The knowledge required and the inference procedure
used in this step are the same as in 4.3. Fig. 2 is an exam-
ple of a set of suspects for which a test is possible. Incon-
sistency is observed among the data of S1, S2 and S3.
The components C and D are redundant and the compo-
nent E is a selector that determines whether to use C or
D. Assume that component C is selected. The suspects
at this stage are A, B, C and E. If there is still incon-
sistency among the data when the selector E is switched
from C to D, component C is exonerated from among
the suspects, otherwise, component C is faulty.
The test generation in this example, therefore, is to
derive a statement of the form:
(if (and (OK S1) (OK S2) (OK S3)
(OK A)(OK B) (OK D) (OK E)
(true (value (output 1 S1) $s1) $¢)
(true (value (output 1 S2) $s2) $¢)
(value (setting E) D)
(= $a (fa $s1 $s2))

(= $b (fb $a))
(= $d (fd $b))
(= %e $d)

(= $s3 (/ $e $en))
(true (value (output 1 S3) $s3) $7)),

where no time lag is assumed between input(s) and out-
put(s) for simplicity. This statement says that if sensors
S1, S2 and S3 and components A, B, D and E are work-
ing, and if selector E is switched to D, the output of sen-
sor S3 is expected to be a value calculated by the set of
functions indicated in the rule using the outputs of sen-
sors S1 and S2. The resolution starts from the redun-
dant compoment D which is selected by the knowledge
that C and D are redundant, selector E is switchable
and now C is selected. It is continued until the above
test form is obtained. A similar test can be generated
for valve control.

ii) Evaluation of tests

Numeric simulation is performed for the derived test,
and the simulated results are evaluated against the obser-
vable data.

Single fault assumption is used for each of the
discriminated sets of the suspects at this final stage to
simplify the diagnosis. In a situation where this assump-
tion is not accepted, it becomes extremely difficult to
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discriminate between suspects unless some heuristic
knowledge is employed. Some of the cases cannot be
logically diagnosed without such knowledge.

5. Application to Diagnosis in a Nuclear Reactor
Power Plant

The above method is applied to a simplified model of
the feed-water system in a boiling water reactor shown
in Fig. 3. The system is composed of 29 components.
Steam leaving the core is condensed to water and re-
turned to the core by the feed-water pump. A small frac-
tion of the steam is used to drive a turbine-driven feed-
water pump. The power level is controlled by the recir-
culation flow rate. The water level is kept constant by
the controller which uses signals from a water level sen-
sor, feed-water flow meter, and main steam flow meter.
The condenser is assumed to serve as a source and sink
for water and steam. The system dynamics are, thus,
determined by those of core, controller and pumps. The
water level sensor 1 (S3) and 2 (S4), and the turbine-
driven (J) and motor-driven (L) pumps are redundant
components. Under normal operating conditions, S3
and J are used. When S3 is used, S4 is not observable.

Simulation was performed on a DEC 2060 using
TSS. All the functions were written in MACLISP. The
A defined in 4.1 to satisfy the propagation requirement
was set at 0.2 sec., which is twice the time step of solv-
ing the differential equations in this application.

The following hypothetical situation is assumed.
Component S3 failed. The anomaly was first detected
by the alarm signal of S9 at the feed-water pump outlet
during a load following operation in which the plant
was not in a steady state. By the time of detection, the
anomaly had already propagated through various com-
ponents and affected many sensor outputs although
they were still within their allowable ranges, except for
S9.

After computing the expectation value of S9 using
the past observable data (step 1), the suspects computa-
tion was started to return the following components
(step 2):

A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,Q, T,

Core : A Condenser

Feed-watecr controller F Pipc : ¢, D, G, I, M, P, Q

Water level selector E Sensor : 81 - sS10
Recirculation pump B Water level scnsor 1 s 83
Feed-water pump Water lcvel sensor 2 : S84
Turbine-driven (main) : J Pump outlet flow meter : S9
Motor-driven (aug) L Interlock : K
Valve : H, N, O, T

Fig. 3 Simplified diagram of a BWR feed-water system.

S1, 82, S3, S8, S9
In this example, almost all components in the system
could be suspects. Use of the observable data narrowed
the suspects to the following seven (step 3):

A, B,C,D,SI1, 82,83

A test was then generated with the knowledge that S3
and S4 were redundant and S3 was in use:

[Switch selector E to S4 from S3. If the data S1, S2 and
S4 are consistent, S3 is faulty. Otherwise, the fault must
lie in either A, B, C, D, S1, S2 or S3.]

In this case, the data were consistent by the assumption,
and thus, the test was successful. The faulty component
was concluded to be the water level sensor 1.

All of the above diagnostic steps were automated. To
improve their efficiency, heuristic knowledge was also
employed and used together with knowledge about
system description. An example is that it is worthwhile
to start resolution from the redundant component in
discriminating between the suspects using the obser-
vable data.

6. Conclusion

A method to diagnose a dynamic system with feed-
back structure was proposed. The method requires no
fault model or knowledge concerning failure causality.
The diagnosis is based mainly on linear input resolution
and all the inference steps are automated.

Application to a BWR feed-water system
demonstrated its diagnostic capability although the
model was much simplified and the assumed anomaly
was hypothetical.

Experience with examples recommended use of
knowledge about system description in combination
with heuristic knowledge for better efficiency. Employ-
ment of frame type representation of the system cou-
pled with criteria inference capability would further
improve the efficiency. It is important to distinguish
logical inference from simulation.
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RESOLUTION PROCESS
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Fig. A2 Resolution process for suspect discrimination of Fig. 1.

Appendix
The resolution process of Fig. 1 is shown in detail
together with facts, rules and termination conditions
for illustrative purpose. The last statement in Fig. A2
relates the observable outputs of the sensors S1 and S2
to the observable output of the sensor S3 when the
components S1, S2, S3, C, D and E are functioning nor-
mally. Functions are not evaluated in this resolution
process. This process is called symbolic simulation in
this paper. The resolution process in other steps is in
principle the same.
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