Short Note

Acceleration Process for a Positive
Definite Iterative Matrix

KeN IcucHI*

Accelerating the rate of the convergence was studied in the context [2] for the iterative process: y=Cy"~"+d,
where the iterative matrix C is a real symmetric. In this paper, an acceleration process is proposed for a real, symmetric and

positive definite iterative matrix C. The numerical results for three examples are given to demonstrate the efficiency.

1. Convergence Property of the Iterative Process

We consider in this paper the question of accelerating
the convergence rate of the iterative process:

yI=Cy+d M

where the iterative matrix C is (nX n)-positive definite
and d is an n-th column vector. We assume the sequence
{y”}, which is generated from (1) has a limiting vector
y.

Let us suppose that the matrix C has eigenvalues A,
(s=1, 2, ..., n) with the relation:

1> >hzhAh= ... 24,>0 2)

and that ¥ (s=1, 2, . . ., n) are the eigenvectors cor-
responding to the A,.

Then the general term of the sequence {y} is given
by

n
yv)—_-y._.z Alx® 3)

s=1

2. Aitken’s A’-Process and Applicable Acceleration
Process

We consider the calculating process in which the
Aitken’s 8*-process, which is defined below by (4), is ap-
plied once after every (m+2) (m=0, 1, . . .) iterations
of (1). That is,

}j(m)zy(m+2)+ w(y(rlH-Z)_y(m)) (4)
where
w=1}/(1-1})
jfz||y(m+z)_y(m+1)”2/||y<m+1)-y<m)”2, o)

denoting by ||. ||* the inner product.
Then the improved value 5™ can be obtained in the
following form (see [2]):
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where 8,= x| /||x¥| for t=2,3,...,n.

The magnitude of the second terms in (6) becomes ex-
tremely large with the value of A, close to unity as
shown in Fig. 2.

Hence we considered, in the context [2], the accelera-
tion scheme for the iterative matrix being real and sym-
metric, which used Chebyshev polynomials of the r-th
degree, p. () instead of 4, to reduce the magnitude of
the second term and the other error terms in (6).

However the acceleration scheme with shifted
Chebyshev polynomials for the iterative matrix being
real, symmetric and positive definite might be
preferable to that with ordinary Chebyshev
polynomials, because the former, in addition to its
simplicity, can be more frequently applied during the
computations than the latter.

Therefore, if the Aitken’s d%-process is to be used suc-
cessfully, it should be applied to the sequence {z{}
defined by

P=y" @¢=0,1,...,r

ZP= Zb, A k=1,2,..) @)
instead of the {y*}, where z{’ are vectors obtained by
iterating (1) ¢ times with initial value z{"’ and the b, , are
the coefficients of the shifted Chebyshev polynomials
which are defined by,
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in the range of 0<A< 1.

Here we assume that the constant ¢ in (8) is a real
value in the range of 0<c<A4,, and the T*(4) are the
shifted Chebyshev polynomials which have the relation

(see [1]):
TH(D)=2QA=DTHA—TX(R) )
with T¢(A)=1 and T{(A)=21—1.

The first three p,(A) are given as follows:
pA)=QRA—c)/(2—0)
pAA)=(8A*—8cA+c?)/(8—8c+c?) (10)
Py(A)=(3243—48cA2+18c*A—c%)/

(32—48c+18c2—¢?).

A graph of p,(A) with ¢=0.82 is pictured in Fig. 1.
Then the general term of the sequence {z{”} is given
by, after a little manipulation,

W=y—3 (PRI an
Now, putting
pr(As)
=" s=1,2, ..., 12
) (s n) (12)
p:c)
PO 13
¢ pAA) 3

., n(see [1]),
{ga,= 1. (14)

we have, for s=1, 2, . .

Here we difine the following function on the range,
—l=a=l:

Fig. | The graph of the function p,(4) for c=0.82.
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A graph of V(A, a, m) is pictured in Fig. 2 for each A
between 0.85 to 0.99 with the increment 0.01, changing
o from —1to 1.

Now, we denote by M(p.(4,), {, m) the maximum
value of V(p.(4,), a, m) with fixed m and r on the range
{=a=1. That is,

M(p,(4), &, m)=max (V(pAR), & m)l.  (16)

(15)

The magnitude of M(p,(A1), {, m) should be made as
small as possible if the present acceleration scheme is to
be applied successfully.

Here we choose r=2 and m=3 for the same reasons
as shown in the context [2] for the real symmetric
iterative matrix.

As shown in Fig. 2, if the negative value of o might
be restricted within a larger value than about —0.4, the
largest value of V(4,, «, 3) in that range of o« becomes
smaller than or equal to that in the positive range of «
for each value of A,.

It is known from numerical experiments (see [2]) that
the Aitken’s d%process can be applied successfully, in
the case that the iterative matrix C has eigenvalues, such
that, ai(=4,/1,)= —0.4,i=2,3, . . ., nfor each value
of A]

Hence when the value of { is taken as {=—0.4, the
following inequality should be satisfied
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Fig. 2 The graph of the function.
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We get the following result from (17) together with
0<c<A, after a little manipulation,

—8+4V7

{= =>—0.4. 17)

Here the best choice of ¢ to reduce the magnitude of
M(pxL), ¢, 3) may be the largest one within the
allowable range of (18), that is,

c=0.864, (19)

which makes p,(4,) smallest in the range.

We noticed, from many numerical results, that small
variations of the value of ¢ caused much effect on the
efficiency of the acceleration process. So, here, we set
¢=0.82 for every value of A, between 0.92 and 0.999.

3. Algorithm of the Acceleration Process

We, from now on, will refer to the acceleration pro-
cess as AC5SP2. It has the following algorithm:

(1) Calculate y* and y®, using equation (1) with in-
itial value y*%.

(2) Calculate z{”, using equation (7) with y
and y®,

(3) Set y:=z{” and calculate y"* and y® from (1).

(4) Calculate z%, =2, 3, 4, 5 in similar way to z{*
setting »@ to the newest z* like in (3).

(5) Set y":=z9, =3, 4, 5.

(6) Calculate 7, using equation (4) with y*, y
and y©.

(7) Set yO:=p?,

(8) Repeat from (1) to (7) until the required ac-
curacy is attained.

0 1
(),y()

4)

4. Numerical Results

We show numerical results of three examples to
demonstrate the efficiency of AC5SP2.

All calculations were performed in double precision
of 16 significant figures in decimal on an FACOM M-
382 computer at the University of Nagoya.

We here use the convergence test

|y —y0| <, t=1,2, ..., 30 (20)

to stop the iterations, where ¢ is an error tolerance.
Initial values for all examples were taken as

y(O)z(l’ 0’ ML | O)T9

denoting by T the transpositions of the raw vector to
the column.

The elements of the column vector din (1) were taken
as d,=0.01, t=1, 2, . . ., 30 for all examples, and the
iterative matrices C in (1) are set up below for three ex-
amples.

We first explain the matrices required to set up the
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iterative matrices C.
A is a 30X 30 real symmetric matrix and its elements
a;; are given as follows:

6 for i=j

3 for |i—j}=1
a;=<1 for |i—j]=2

1 for |i—j|=3

0 for |i—j|=z4.

X is a 30X 30 orthogonal matrix which is composed
of the n eigenvectors corresponding to the eigenvalues
of A, computed by Jennings method (see [3]) in decreas-
ing order of size.

B is a 30X30 diagonal matrix and its diagonal
elements b; (>0) are varied for each example. The
values used are given in the examples.

Now, matrix C is given by

C=XBXT

which is a 30X 30 real, symmetric and positive definite
matrix.

Example 1. The matrix B is a 30 X 30 diagonal matrix
and its elements are given as follows:

bn1=0.999 5,;,=0.998 bH3;=0.997 bu=0.996
bss=0.995  be=0.994  57=0.993  by3=0.992
b99:0991 b1010:0.99 bll]l=0.95 b1212=0.90
b|313:0.85 b1414:0.80 b1515:0.75 b]ﬁ 1(,20‘70
b1717=0.65 b]gls:0.60 bw 1920.55 bz()zo=0.50
b21 21 =0.45 b;z 22=0.40 b23 23=0.35 b24 24:0.30
b25 25:0.25 bz(,z(,:().zo b27 27:0. 15 bzg 28:0~ 10
bzg 29:0.05 bzo 3o=0.03.

Table | Numerical results for example 1 with e=10 °.

Acceleration not -
applied ACSSP2 AC3P1 AC5P2 ACS5P4

Process
Iteration Numbers 3798 528 610 718 656
Computing Times ;353 5 25 271 243

(ms)

(Please refer to the context [2] for AC3P1, AC5P2 and AC5P4)

Table 2 Numerical results for example 1 with e=10 °.

Acceleration not
Process applied ACS5SP2 AC3P1 ACS5P2 ACSP4

Iteration Numbers >10000 1168 1447 1398 1616

Computing Times . 3614 444 537 530 599

(ms)

Example 2. The matrix B is a 30X 30 diagonal matrix
and its elements are given as follows:

b||=0.96 b22=0.95 b33=0.94 b44:093
b55=092 b56:091 b77=090 bsg=089
bge=0.88 b1010=0.87 b1 11=0.86 b212=0.85

The other diagonal elements are the same as in the exam-
ple 1.
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Table 3 Numerical results for example 2 with e=10"".

Acceleration not
Process applied ACS5SP2 AC3P1 ACSP2 ACSP4
Iteration Numbers 112 48 49 58 56
Computing Times 40 18 18 21 2
(ms)

Table 4 Numerical results for example 2 with =10 "%,

Acceleration not
Process applied ACSSP2 AC3P1 ACSP2 ACsSP4
Iteration Numbers 291 78 109 108 96
Computing Times
(ms) 106 29 40 40 35

Example 3. The matrix B is a 30X 30 diagonal matrix
and its elements are given as follows:

b“ =0.92 b22=O.91 b33:090 b44:089
b55=088 b“=087 b77=086 bss=085
b99=0.84 b10|0=0.83 b1||1=0.82 b|2 |2=0.81
b1313=0.80

The other diagonal elements are the same as in the exam-
ple 1.

Table 5 Numerical results for example 3 with e=10"".

Acceleration not
Process applied ACS5SP2 AC3P1 ACS5P2 ACS5P4
Iteration Numbers 68 28 34 38 56
Computing Times 24 1 13 14 21
(ms)

Table 6 Numerical results for example 3 with e=107°,

Acceleration  not - \csopy AC3PI ACSP2 ACSP4
Process applied
Iteration Numbers 165 58 70 78 76
Computing Times 60 2 26 30 28

(ms)
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5. Conclusion

It is observed from the results of the three examples
that ACSSP2 is superior to the others in the iteration
numbers and the computing times required until condi-
tion (20) is satisfied, and that AC3P1 is comparable in
those results to ACSSP2. But the application of AC3P1
yields poor results in accuracy, compared with those of
ACS5SP2 and ACSP4.

The application of AC3P1 for the iterative matrix
with A, very close to unity stops the computations as if
condition (20) is satisfied even though the required ac-
curacy is not attained.

So, in the present case, we recommend ACS5SP2 with
¢=0.864, in all the positive range of A,, especially in
41>0.92, and we recommend AC3P1 in the range of
A1=0.92,
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