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Methods are presented to reduce CPU overhead when an Operating System (OS) with multiple virtual storage
is running under a Virtual Machine System (VMS) with 2-0-translation tables, which are also called shadow
tables and translate level 2 addresses (i.e. OS’s virtual addresses) to level 0 addresses (i.e. system’s real ad-
dresses).

The conventional multiple 2-0-translation table method has the advantage that 2-O-translation tables can be
used corresponding to each OS’s virtual storage, and it reduces VMS’s CPU overhead due to an OS switching
its virtual storage.

However, it has some disadvantages. That is, (1) an OS in a VM may issue a privileged instruction to in-
validate pages during its paging process. In order to simulate it, the associated 2-0-translation table entries have
to also be invalidated, which means to cancel the address mapping from level 2 page addresses to level 0 page ad-
dresses. This invalidation overhead will increase in proportion to the number of 2-O-translation tables.
(2) Moreover, the switching of multiple 2-0-translation tables is a new additional CPU overhead.

In order to solve the problem, an assist is invented to selectively invalidate the 2-0-translation table under the
condition that a page address to be invalidated is given in a privileged instruction used for the OS’s page in-
validation process. Moreover, another assist is developed to realize fast 2-O-translation table switching cor-
responding to switching OS’s virtual storage. These two assists are named, generically, Multi-Shadow Assist
(MSA), which is applicable to any Virtual Machine (VM) irrespective of its memory attributes.

Acceleration ratios of MSA to associated software processes are estimated at 3.4 ~ 24.4. Multi-Shadow Assist
is experimentally implemented in Hitachi’s VMS using conventional hardware architecture, and performance
measurements are obtained on some benchmark jobs for this report.

Performance data which confirm the effectiveness of MSA are presented. Multi-Shadow Assist reduces
almost all the 2-0-translation table maintenance overhead, with a 10% reduction in mean instruction execution
time, and a 409 ~ 60°5 reduction in total CPU overhead.

Moreover, a method to prevent the double invalidation of the 2-0-translation tables is proposed. It is effective
for the temporary increase of the number of the OS’s active virtual storage.

This performance improvement efficiently supports the OS with multiple virtual storage running under the

VMS using conventional hardware architecture.

1. Introduction

A Virtual Machine has a functionally similar architec-
ture to a real host computer on which a statistically
dominant subset of virtual processor instructions ex-
ecutes directly"?. A Virtual Machine System (VMS)
consists of more than one Virtual Machine (VM) which
can run concurrently. A Virtual Machine Monitor
(VMM) is a control program of a VMS.

Each user of a VMS can select a different Operating
System (OS) because different OSs can run concurrently
in different VMs. Virtual Machines are usually used for
system development and testing, and to obtain the ser-
vices of more than one OS from a single real host com-
puter.

The practical use of a VMS is dependent on its CPU
overhead and so, many attempts have been made to
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reduce this overhead?®. Representative examples of
these are Virtual Machine Assist (VM-Assist)”, Virtual
Equal Shadow method (VES)®”, and Multiple 2-0-
Translation Table method?.

A 2-O-translation table is an address translation table
which translates level 2 addresses (i.e. OS’s virtual ad-
dresses) to level 0 addresses (i.e. system’s real ad-
dresses). A 2-0-translation table is also called a shadow
table.

The VM-Assist is a microcode implementation design-
ed to enhance the execution of privileged instructions
and supervisor calls associated with VMs. In most cases
the effects of VM-Assist are significant, and it reduces
the VMM’s CPU overhead by about 80% for some
benchmark jobs®. The VES and Multiple 2-0-Transla-
tion Table support have reduced the VMS’s CPU overhead
caused by paging/swapping processes in the multiple vir-
tual storage of an OS under a VMS.

In spite of these efforts, the VMS’s CPU overhead
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for an OS with multiple virtual storage is not low
enough yet, when using conventional hardware architec-
ture. The reasons are as follows.

(1) The VES can be applied only to one VM (i.e.
V=RVM: explained later). Namely, the performance
can be enhanced only for V=RVM?,

(2) The Multiple 2-0-Translation Table method can
avoid the full invalidation of a 2-0O-translation table by
switching the 2-0-translation table corresponding to the
OS switching its virtual storage. This considerably
reduces the VMS’s CPU overhead.

However, it has some disadvantages. That is, an OSin a
VM may issue a privileged instruction to invalidate its
own pages during its paging process. In order to
simulate it, the associated 2-0-translation table entries
have to be also invalidated, that is, the address mapping
defined by the entries from level 2 page addresses to
level O page addresses is to be invalidated. The invalida-
tion overhead will increase in proportion to the number
of 2-0-translation tables.

Moreover, the switching of the 2-0O-translation table is a
new additional CPU overhead. This new additional
CPU overhead may cancel the original effects of this
method.

As another reduction method, Fast 1/O Simulation
for V=Resident VM is presented®. It has considerably
reduced VMS’s I/O simulation overhead. However, it
does not address the reduction of the 2-O-translation
table maintenance overhead for an OS with multiple vir-
tual storage under a VMS.

Several reduction methods are proposed here for the
VMS’s CPU overhead for an OS with multiple virtual
storage under a VMS using conventional hardware ar-
chitecture. They are as follows.

(1) Multi-Shadow Assist (MSA), which implements
selective invalidation and fast switching of the 2-0-
translation tables. This solves the above-mentioned
disadvantages of the multiple 2-O-translation table
method.

(2) Prevention of 2-0O-translation table double invalida-
tion.

This paper consists of the following sections.

Section 2: The concept of a Virtual Machine System is
explained.
Section 3: The conventional reduction methods for

VMS’s CPU overhead are described, the multiple 2-0-
translation table method, invalidation and validation
are explained in detail.

Section 4: The new reduction methods for 2-0-transla-
tion table maintenance are described.

Section 5: Performance data will be presented and it
will be shown that VMS’s performance is sufficiently im-
proved to make practical the use of any VMs with multi-
ple 2-0O-translation tables.

Section 6: Conclusions.

2. Virtual Machine System (VMS)

A Virtual Machine System gives multiple users execu-
tion environments that have an architecture similar to a
real host computer. The conventional hardware ar-
chitecture of a real host computer, as discussed here,
has the following characteristics”.

(1) Central Processing Unit (CPU)

(a) Two processor states, called a supervisor state and
a problem state.

(b) Privileged instructions, which can be executed on-
ly in the supervisor state.

(¢) A dynamic address translation (DAT) feature,
which translates a virtual memory address into a real
memory address. The DAT feature uses address transla-
tion tables called Segment Tables/Page Tables
(STs/PTs). The DAT feature can perform only one
level address translation, namely it can not do two level
address translation.

(d) Translation Look-aside Buffer (TLB), which con-
tains pairs of virtual page addresses and real page ad-
dresses. TLB is used for fast address translation by the
DAT feature.

(e) Buffer Memory, which contains copies of the con-
tents of the real memory. This is used for fast access to
data.

(f) A prefix area, which is in real memory and con-
tains control information for various hardware interrup-
tions.

(2) Virtual Machine

Virtual machines also have the two processor states,
complete instruction sets, storage, and prefix areas
described above for CPUs. The mechanisms used by
VMM to implement a VM fall into three categories: pro-
cessor simulation, memory simulation and 1/0 simula-
tion.

Processor simulation is accomplished by running VM
programs on a real processor. Most of the nonprivi-
leged or privileged state instructions are executed di-
rectly or are emulated by the processor, respectively.
Some sensitive instructions are trapped and simu-
lated by VMM.

Memory simulation is performed by providing a vir-
tual memory to each VM. This virtual memory appears
to be a dedicated real memory complete with address
translation hardware. An OS in a VM manages this
memory as if it were real. Therefore, when an OS in a
VM is a virtual storage OS (VOS), a 3-level memory
hierarchy is constructed, where:
level 0 memory: real memory of a real processor;
level 1 memory: memory of a VM, (An OS in a VM
regards this as real memory);
level 2 memory: virtual storage created by VOS in a
VM.

Simulation of the dynamic address translation
feature is performed by the VMM using real hardware
and special address translation tables (called 2-0-transla-
tion tables, or shadow tables) that map level 2 memory
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addresses into level 0 memory addresses.

According to their memory attributes three kinds of
VMs are defined as illustrated in Fig. 1.

V=R VM: The level 1 memory is resident in the real
memory, and level 1 memory address=level 0 memory
address except in the virtual prefix area.

V=Resident VM: The level 1 memory is resident in
the real memory, and level 0 memory address=level 1
memory address+c«, where, a (¥x0) is a fixed page
number given to each V=Resident VM at the VMS’s
system generation.

V=V VM: The level 1 memory is virtual memory to
VMM, it is pageable, and is not always resident.

Address translation tables are defined as follows.

1-0-Translation Tables: Address translation tables
which translate level 1 memory address to level 0
memory address. These are also called 1-0-Translation
Segment Tables and Page Tables.

2-1-Translation Tables: Address translation tables
which translate a level 2 memory address to a level 1
memory address. These are also called 2-1-Translation
STs and PTs. 2-1-Translation Tables are created and
managed by an OS in a VM, therefore, they may also be
called the OS’s translation tables.

2-0-Translation Tables: Address translation tables

VM’s memory attributes.

which translate level 2 memory addresses to level 0
memory addresses. These are also called 2-0-Transla-
tion STs and PTs. 2-0-Translation Tables are created
and managed by VMM and VM-Assist, and used by the
DAT feature when an OS is running in a level 2
memory. Their entries are composed from 2-1-Transla-
tion Table entries and 1-0-Translation Table entries. 2-
0-Translation Tables are also called Shadow Tables.

3. Conventional Reduction Methods for CPU
Overhead of VMS with 2-0-Translation Tables

3.1 Conventional Reduction Methods

The representative methods to reduce VMS’s CPU
overhead are listed below.
(1) Virtual Machine Assist (VM-Assist): This is a
microcode assist for the frequently used privileged in-
struction simulation. VM-Assist’s effects are significant
as described in Sec. 1. It also assists creation and valida-
tion of 2-O-translation page table entries.
(2) Virtual Equal Shadow (VES): For the V=R VM,
2-O-translation tables can be eliminated as illustrated in
Fig. 2. The Operating System’s translation tables (i.e. 2-
1-translation tables) are also used as the 2-O-translation

level O memory

AN

X o

0 i i |{|

R

o) ! ]
1o X

level 1 memory

1
Shadow Table

level 2 memory

1
2-0-Translation Table

"
OS's Virtual 5pace0

Fig. 2 Virtual Equal Shadow for V=R VM.



Reduction of 2-0-Translation Table Maintenance Overhead in a Virtual Machine System 31

tables as is, and this significantly reduces 2-O-translation
table maintenance overhead®.

(3) Multiple 2-0-Translation Table method: An OS
with multiple virtual storage in a VM can be given multi-
ple 2-O-translation tables corresponding to each the vir-
tual storage of an OS. This is called a multiple 2-0-
translation table method. In a single 2-O-translation
table method, there is only one 2-0O-translation table in a
VM.

The advantages of the multiple 2-O-translation table
method are explained as follows. See Table 2, (#3).
(Table 2 is explained in the later section).

An OS in a VM issues a privileged instruction to
switch its virtual storage. In a single 2-O-translation
table method, all the table entries have to be invalidated
(this is called a full invalidation) to simulate it, because
the address mapping from the OS’s virtual page ad-
dresses (i.e. level 2 page addresses) to the OS’s real page
addresses (i.e. level 1 addresses) is entirely changed.

The invalidation of an address translation table entry
means that the address mapping defined by that entry is
canceled. The full invalidation of an address translation
table means that all the table entries are entirely cancel-
ed.

In the multiple 2-O-translation table method, each
OS’s virtual storage is given its own 2-O-translation
table. Therefore, it is enough only to switch the 2-0-
translation table corresponding to the OS switching its
virtual storage. Thus, the full invalidation of a 2-0-
translation table can be avoided. This considerably
reduces the invalidation overhead of the 2-O-translation
table. Moreover, the ratio of the number of the
references not in TLB to that of the total references (i.e.
Not is TLB Ratio: NITLBR) is reduced by the multiple
2-0-translation table method, because it can avoid the
full TLB purge due to the OS switching its virtual
storage.

A full 2-0-translation table invalidation causes TLB
purge of all its entries and brings an NITLBR increase.
This exerts a bad influence upon the MIET (i.e. Mean
Instruction Execution Time) of the real host computer.
Therefore, a full invalidation has to be avoided and a
selective invalidation has to be adopted as often as possi-
ble.

Table 1 shows which conventional reduction methods
are effective with what kinds of OS in a VM. There are
three kinds of OS as explained here.

Table 1 Effectiveness of conventional reduction methods.

OS| Reap | With single | with multiple

Reduction Storage | virtual virtual Remarks
Methods ! g storage storage
VM-Assist O O O !O: small/

. |medium
Virtual Equal
Shadow x O ‘ © ©: large

T X : none

multiple t % © on
2-0-Trans. Table E |

Real Storage OS: An OS which does not have virtual
storage.

An OS with a single virtual storage: An OS which has
only one virtual storage.

An OS with multiple virtual storage: An OS which
has multiple virtual storage.

This table shows that the Virtual Equal Shadow
method and the Multiple 2-0-Translation table method
are more effective with an OS with multiple virtual
storage than with any other OS. The reason is that 2-0-
translation table maintenance overhead is dominant in
the total CPU overhead of an OS with multiple virtual
storage under a VMS, and the two methods are effective
especially for 2-O-translation table maintenance
overhead reduction. On the other hand, the 2-0O-transla-
tion table maintenance overhead is small in the other
OSs.

For a drastic reduction of the overhead it is desirable
to eliminate 2-O-translation tables. However, the
elimination is applicable only for the V=R VM (.e.
VES method described above) under the hardware ar-
chitecture described in Sec. 2. On the other hand, the
multiple 2-0O-translation table method is effective with
any type of VM memory attributes.

This paper assumes that the above-mentioned conven-
tional reduction methods have already been taken.

Table 2 shows 2-0-translation table maintenance
overhead and OS events which cause that CPU
overhead. It also shows 2-O-translation table
maintenance overhead ratios per one time in (#4). Here,
the 2-O-translation table maintenance overhead is ex-
plained for further discussion with Table 2.

3.2 2-0-Translation Table Maintenance Overhead

2-0-Translation table maintenance consists of the
following processes. .
(1) Acquisition, release and initialization of the 2-0-
translation table area.

(2) 2-0-Translation page table invalidation.

(3) 2-O-Translation page table entry validation and
creation.

(4) 2-0-Translation table switching.

In these processes, process (1) is executed only once
at the VM’s log on/off time. Therefore, its overhead
may be ignored. However, processes (2), (3) and (4) are
processed while the OS is running under a VMS, and
they may cause a relatively high CPU overhead.

Process (2) is explained as follows.

When an OS’s virtual pages are invalidated at page
release, page out, segment release, swap out and so
forth (See Table 2, #1, #2), the OS’s page translation
table entries for the translation from level 2 memory to
level 1 memory are partly invalidated. Therefore, the
associated or entire entries of the 2-O-translation tables
must be invalidated. This is called a selective invalida-
tion or a full invalidation, respectively.

This overhead increases in proportion to the number
of invalidated entries or 2-0-translation tables. An OS’s
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segment release, swapping out and log-off (Table 2, #2)
do not take place so often. Therefore, that event will be
ignored, hereafter.

Process (3) is explained as follows.

When a 2-0-translation page translation exception
happens during the OS’s running in a VM, the 2-0-
translation page table entry is composed from the con-
tents of the OS translation table (i.e. 2-1-translation
table) entry and those of the 1-0-translation table entry.
Conventionally, this process (3) is achieved by one of
the VM-Assist’s features. This overhead increases in
proportion to the number of referred virtual pages.

Process (4) is explained as follows.

When an OS with multiple virtual storage running
under a VM switches its virtual storage, the correspon-
ding 2-0-translation table is searched and is also switch-
ed in the multiple 2-0O-translation table method. On the
other hand, in a single 2-0O-translation table method, all
the 2-0O-translation table entries are entirely invalidated,
as described in the preceding section. (See Table 2, #3).
This switching overhead increases in proportion to the
number of 2-0-translation tables.

Table 2 also shows the disadvantages of the multiple
2-0O-translation table method. They are described here
as follows. See Table 2 (#4).

3.3 Disadvantages of the Multiple 2-0-Translation
Table Method

3.3.1 Full Invalidation of the 2-0-Translation Tables

An OS invalidates the page table entry and clears the
TLB of the associated entries during the paging process
(See Table 2, #1). For this purpose, an OS usually uses a
privileged instruction, which may have one of the
following functional specifications.

(1) Specification of virtual page address to be in-
validated.
(2) Specification of real page address to be in-
validated.

An OS in a VM does not recognize any 2-0-transla-
tion table, but only recognizes its own transiation table
(i.e. 2-1-translation table). A privileged instruction with
virtual page specification (1) specifies a level 2 page ad-
dress in a VM environment. Therefore, the associated
2-0-translation page table entry is easily found and in-
validated. Moreover, the associated TLB entries can be
invalidated easily. That is, a selective invalidation is car-
ried out. In this case, the simulation steps are relatively
few, and the influence upon Mean Instruction Execu-
tion Time (MIET) after finishing the privileged instruc-
tion simulation with virtual specification (1) is relatively
small because the selective TLB purge does not cause a
“Not in TLB Ratio”’ increase.

In a VM environment privileged instruction with real
page specification (2) specifies a level 1 page address
which is translated to a level 0 page address easily.
However, because an OS does not specify any 2-0-
translation table entries, it is difficult for the VMM to
find the associated 2-O-translation page table entry.
That is, all 2-O-translation page table entries must be
looked up in order to determine whether they will con-
tain the specified level 0 page address. Therefore, it will
take many very complex execution steps to make the
precise simulation for the privileged instruction with
the real specification (2).

In order to avoid this complexity, all 2-0-translation
table entries and all TLB entries may be invalidated for
the privileged instruction with the real specification (2).
That is, a full invalidation may be executed. A full in-
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validation method is a very simple simulation method,
however, its execution steps are in proportion to the
number of 2-O-translation tables, (See Table 2, #4), and
it has a bad effect upon MIET after the privileged in-
struction simulation with real specification (2), because
of the full TLB purge.

Here, the specifications (1) and (2) are examined quan-
titatively. The examination supposes that a full invalida-
tion method is taken conventionally for the real
specification (2). Table 3 shows the ratio of the number
of invalidated 2-O-translation table entries, the ratio of
the simulation execution steps and the ratio of the
number of invalidated TLB entries. This table reveals
that every item of the real specification (2) is from tens
of times to thousands of times greater than that of the
virtual specification (1). Therefore, the frequent use of
a privileged instruction with real specification (2) will
bring high VMS CPU overhead.

Accordingly, under a VMS a privileged instruction
with virtual specification (1) is more desirable than a
privileged instruction with real specification (2).

Conversely, under a real computer system the latter is
more desirable than the former, because the TLB entry
purge for the latter can be more selective than that for
the former, because the same virtual page address of
different virtual storage may be mapped to different real
page addresses. For example, virtual page address V of
virtual storage S1, S2 is mapped to R1, R2, respectively.
That is,

(@ VinSI-RI1,
(b) Vin S2—R2.

The former invalidates both (a) and (b), however, the
latter invalidates only either (a) or (b). For this reason,
the real specification (2) is used in most of the native
OSs. This is also true in the VMS; however, in the
simulation of VMS, it is difficult for VMM to find the
associated 2-O-translation table entry in the real
specification (2) as described above. Therefore, any
selective invalidation is difficult to execute, and conven-
tionally a full invalidation is carried out for the real
specification (2).

As a privileged instruction with real specification (2),
the Partial Purse TLB (PPTLB) instruction exists. This
instruction specifies a page table origin and a page index
and invalidates the page table entry which contains a

real page address (R) to be invalidated, and clears the
TLB of the associated entries which contain the real
page address (R). Conventionally, in the VMS the full
invalidation method has been taken for this PPTLB
simulation. The reduction method for it will be describ-
ed in Sec. 4.

3.3.2 OS’s Virtual Storage Switch under VMS

An OS issues a privileged instruction (Load Control
(CR1): This loads a segment table origin into Control
Register (CR1)) to switch virtual storage. See Table 2,
(#3). The Load Control (CR1) simulation consists of
two processes. One is to load a new 2-1-translation seg-
ment table origin into the virtual CR1. The other is to
switch 2-O-translation tables corresponding to the new
virtual CR1.

Moreover, if the associated 2-0-translation table can
not be found, and additional 2-0O-translation tables can
not be created because of memory limitations, a 2-0-
translation table for a different virtual storage will be
stolen. This stolen table is thoroughly invalidated
before reuse. This process brings high CPU overhead,
as mentioned in the preceding section.

Therefore, the memory limitations must be extended
so that additional 2-O-translation tables can be made
when necessary. Moreover, because the frequency of an
OS’s Load Control (CR1) issuance is very high, the 2-0-
translation table search process must be fast. The
methods will be described in Sec. 4.

3.3.3 2-0-Translation Table Double Invalidation
When the number of active virtual storage of an OS
increases from N, to N, (N;<N,), the number of cor-
responding 2-O-translation tables is easily increased
from N, to N,. The reason is that new 2-0-translation
tables may be created as far as the system allows, if the
corresponding 2-0-translation table can not be found.
After that, when the number of active virtual storage
of an OS decreases to N,, the Purge TLB instruction is
issued to clear the TLB of all its entries. However, it is
difficult to decrease the number of 2-0O-translation tables
to N,, because it is difficult for VMM to find the cor-
responding 2-0-translation tables to be inactivated. An
OS does not inform the VMM of its invalidated virtual
storage identifications. For this reason, VMM in-
validates, overall, N, 2-O-transiation tables for the

Table 3 Virtual page specification (1) and real page specification (2).

4 Specification m T
| Item |

Number Ratio of Invalidated ‘
2-0-Trans. Table Entries

Ratio of Simulation
. 1
Execution Steps | ’

———
0] Remarks
I
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’ Tables
W\l77;N+4 — Segement Size: 64KB
when N< 10 | P'flge Size 4.KB
- | Virtural Space Size
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Purge TLB simulation. However, it is better that they re-
main as 2-0O-translation tables for subsequent reuse
rather than that they be released.

If the OS continues to run within N, active virtual
storage after this, N,— N, 2-0-translation tables which
are already invalidated will not be used at all. Under
this condition, if the OS issues the Purge TLB instruc-
tion, entirely unused N,—N, 2-O-translation tables will
also be invalidated again. This means double invalida-
tion of N,—N, 2-O-translation tables. The execution
steps will increase in proportion to N,—N, as shown in
Table 2, (#4).

Therefore, the temporal increase of the number of 2-
O-translation tables will bring high CPU overhead even
though the frequency may be low. The prevention
method for this event will be described in Sec. 4.

4. New Reduction Methods for 2-0-Translation Table
Maintenance Overhead

The description in Sec. 3 makes it clear that the
following improvements are needed in order to make
the best use of the advantages of the multiple 2-0-
translation table method and to decrease its disadvan-
tages.

(1) Selective 2-0-translation table invalidation

(2) Fast 2-O-translation table switching

(3) Prevention of 2-O-translation table double invalida-
tion

These improvement methods are described below.

4.1 Selective 2-0-Translation Table Invalidation

Suppose that an OS uses the PPTLB instruction
described in Sec. 3.3.1 for the paging process. The
following handshaking is introduced in order to change
the PPTLB simulation from a full invalidation to a
selective invalidation. Namely, ‘‘an OS in a VM has to
give a virtual page address to be invalidated in the use
of a privileged instruction for its page invalidation pro-
cess.”’

The PPTLB instruction specifies page index as
described in Sec. 3.3.1, however, it does not specify seg-
ment index. That is, it does not specify a virtual page ad-
dress to be invalidated. Therefore, it is required that a
correct segment index should be specified in its operand
at this handshaking. An OS should recognize a virtual
page to be invalidated. Therefore, the above-mentioned
handshaking is a reasonable requirement for an OS.

Under this handshaking, the level 2 page address (V2)
to be invalidated is described. The V2 consists of cor-
rect segment index (SI) and page index (PI). Besides,
the level 1 page address (V1) is also obtained from the
specified 2-1-translation page table entry. In order to
decrease the number of invalidated entries as much as
possible, the following simulation method is taken. See
Fig. 3.

(1) The level 1 page address (V1) is translated to a
level 0 page address (VO) by looking up a 1-0-translation

H. UMENO, T. KUBO and S. TAKASAKI

table.

(2) The 2-O-translation page table entry associated
with the level 2 page address (V2) is obtained. It is deter-
mined from the 2-O-translation segment table origin
(STO1), segment index (SI) of (V2), associated 2-0-
translation page table and page index (PI) of (V2).

(3) Itis determined whether or not the 2-0-translation
page table entry contains the level 0 page address (VO0).
(4) When it contains the level 0 page address (V0), the
2-O-translation page tabel entry is invalidated.
Moreover, the TLB is also cleared of the associated en-
tries which contain the address translation pair (V2,
VO0). This is carried out by issuing a PPTLB instruction
for the associated 2-0-translation page table origin and
level 2 virtual page (V2).

(4') If it does not contain (V0), no entries of 2-0-
translation page tables or TLB are invalidated at all.
(5) The above-mentioned (2), (3), (4) and (4') are per-
formed for all 2-0-translation tables, because common
virtual pages, which correspond to the same real pages,
may exist.

The maximum number of 2-0-translation page table
entries invalidated is equal to the number of 2-0-transla-
tion tables. This may happen for common pages of each
virtual storage. This maximum number is 1/4096 as
compared with a full invalidation method (as shown in
Table 3). Moreover, the number of the invalidated TLB
entries becomes very small because of the coincidence
condition (4) described above.

An assist is developed, which is a microcode im-
plementation to emulate the above-mentioned PPTLB
simulation of selective invalidation. This is called a
PPTLB-Assist. In it, step (4), described above, is achiev-
ed by TLB entry purge micro-instructions.

4.2 Fast 2-0-Transalation Table Switching

A microcode assist which assists the privileged instruc-
tion (Load Control (CR1)) simulation is developed.
This microcode assist searches for an associated 2-0-
translation table, and if the table is found, loads the 2-
O-translation segment table origin into a real control
reg. 1. If not found, an interruption will take place and
control is returned to VMM, because of the low frequen-
cy. This assist is called a Load Control (CR1)-Assist.

The above-mentioned PPTLB-Assist and Load Con-
trol (CR1)-Assist are named generically Multi-Shadow
Assist (MSA). It is applicable to any kind of VM
memory attributes (i.e. V=R, V=Resident, V=V, See
Fig. 1) and its effects do not depend upon them.

4.3 Prevention of 2-0-Translation Table Double In-
validation

In order to prevent double invalidation of the 2-0-
translation tables, it is most desirable that VMM
manages whether a valid 2-0-translation table entry is
made after a full 2-O-translation table invalidation.
However, a valid 2-O-translation table entry is made
with the conventional microcode assist VM-Assist.
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Fig. 3 PPTLB simulation of selective invalidation.
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Therefore, it is difficult for VMM alone to manage that
information.

Thereupon, the following method is proposed.

Before a 2-O-translation table may be used, it should
be selected first by a Load Control (CR1) simulation
which switches an OS’s virtual storage. When a 2-0-
translation table is selected through this simulation, a
selection flag (S), which is provided to each 2-0-transla-
tion table, is set ““ON”’.

Only when its selection flag is ‘“ON”’, is there a
possibility that the 2-0-translation table may be used
and its valid entry may exist. Therefore, it is only need-
ed for the Purge TLB simulation to purge the 2-0-
translation tables with the selection flags ‘““ON’’. This
will prevent the double invalidation of the 2-0O-transla-
tion tables. Naturally, the Load Control (CR1)-Assist
should support this selection flag.

The performance improvement methods described in
Sec. 4 have been experimentally implemented in
Hitachi’s Virtual Machine System. The measurement of
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their effects will be described in Sec. 5.

5. Performance Improvement Effects

5.1 Acceleration Ratios of Multi-Shadow Assist

The ratios of software simulation time to MSA’s ex-
ecution time are called the acceleration ratios of MSA.
Their graphs are drawn in Fig. 4. It reveals that the ac-
celeration ratio of PPTLB-Assist is about 3.4 when the
number of 2-0-translation tables (V) equals 6, while
that of Load Control (CR1)-Assist is about 24.4 when
N=3,

As for PPTLB-simulation, conventionally a full in-
validation method was adopted. The selective invalida-
tion method described in Sec. 4 decreases the software
simulation time for the full invalidation method.
PPTLB-Assist is a microcode assist for the selective in-
validation method. Therefore, its acceleration ratio is
to the software selective invalidation simulation time.
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Fig. 4 MSA'’s Acceleration Ratios.
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Measurement

No. Conditions Job Name
1 OS with multiple T *'DMBS Start
~TT.7 7 virtual Storage — . -,
2 € *BMPP x 5%
3 V=Resident DMBS Start
8MB ~BMPP X5
Single VM

Though the graph is not drawn, PPTLB-Assist is about
140 times faster than the software simulation time of
the full invalidation method when N=6.

Thus, the software selective invalidation method
reduces the full invalidation PPTLB-simulation time.
Moreover, PPTLB-Assist reduces the software selective
invalidation PPTLB-simulation time. These data are ob-
tained from the experimental (micro-)program coding.

5.2 Performance Evaluation Tools

The following tools are used.

(1) Software monitor: This is built in the VMM, and
monitors privileged instruction simulation, interruption
simulation, and so forth.

(2) Hardware monitor: This is built in a real host com-
puter, and monitors CPU service time, supervisor state
CPU service time, CPU wait time, NITLBR, Not in
Buffer Ratio (NIBR), instruction execution counts, and
so forth.

(3) Data analyzing program: This program sums up
and analyzes the data gathered by both types of
monitors.

5.3 Benchmark Jobs

Table 4 shows benchmark jobs. These jobs are
Database Management Programs under a Hitachi OS
with multiple virtual storage. They are of low CPU
utilization and high I/O frequency. They are executed
sequentially.

5.4 Performance Data

The following effects are expected by the perfor-
mance improvement methods described in Sec. 4.
(1) Optimal number increase of the 2-O-translation
tables,
(2) NITLBR, and MIET reduction,
(3) Total CPU overhead reduction.

These measurement data are discussed here as
follows.

5.4.1 Optimal Number Increase of the 2-0-Transla-
tion tables

As for the number of 2-O-translation tables, it is
enough to provide a VM with K 2-O-translation tables.
Here, K equals the number of active level 2 virtual
storage. However, a conventional VMS has disadvan-
tages due to a full invalidation of 2-0-translation tables
for PPTLB-simulation. Therefore, the total CPU

Table 4 Benchmark jobs.

Uti?isaltjion l\/?e]gi-(s};)tl/as Remarks
2.7% 86.5 *!: Data Base Manage.
L System
6 ]7,, - AZ'L *2; Batch Message
Processing
4.6 1 54.5 Program

*3: 5-Multi. Jobs

overhead will be minimized at a smaller number of 2-0-
translation tables than K. Fig. 5 shows this condition.

Namely, it reveals that the optimal number of 2-0-
translation tables (Ny) equals 3 in the conventional
VMS, though K=6~7 (That is, OS’s master storage,
Data Base management control storage, 5 job storage).
On the contrary, in the VMS with MSA support, Ny=6,
which is close to the value of K. Thus, the VMS with
MSA support has the optimal number of 2-0-transla-
tion tables close to the number of active level 2 virtual
storage. This means that MSA has sufficiently decreased
the disadvantages of Multiple 2-0-Translation Table
method.

5.4.2 Mean Instruction Execution Time Reduction

Fig. 6 shows the graphs of MIET, NITLBR and
NIBR for the benchmark jobs. Each value is a relative
value when that of the conventional VMS is set equal to
1. The number of 2-0-translation tables is set to the op-
timal number for each case, namely, 3 in the conven-
tional VMS or 6 in the VMS with MSA support.

The figure shows that MSA has significantly reduced
NITLBR to 1/2~ 1/4. Moreover, it causes about a 10%
reduction in the MIET. Thus, the effects of selective
TLB purge is clear.

5.4.3 Total CPU Overhead Reduction

Fig. 7 illustrates the total CPU overhead reduction
for the benchmark jobs. The number of 2-0-translation
tables is set equal to the optimal number for each case.

Values for this figure are obtained by the following
means.

(1) VMM CPU service time is the supervisor CPU ser-
vice time measured by a hardware monitor.

(2) VMM items are calculated from the privileged in-
struction simulation counts measured by a software
monitor.

(3) VM-Assist overhead is also calculated from the
privileged instruction emulation counts.

This figure shows that 2-O-translation table
maintenance overhead (i.e. VM-Assist’s 2-O-translation
table validation (), VMM’s PPTLB, Load Control
(CR1) i.e. (LCTL), and Purge TLB simulation ()
forms 15% ~ 609 of the total CPU overhead in the con-
ventional VMS. Moreover, the 2-0O-transiation table
maintenance overhead is almost entirely reduced with
MSA, which causes about a 409 ~60% reduction in
the total CPU overhead.
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Total CPU Time (relative value) of cach job
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Fig. 7 Total CPU Overhead Reduction with MSA.

6. Conclusions

The Multi-Shadow Assist (MSA) implementing the
fast 2-0-translation table switching and the selective in-
validation of the 2-O-translation tables has been propos-
ed. The MSA is applicable to any kind of VM memory
attributes, and its effects do not depend upon them. The
acceleration ratios of MSA are 3.4~24.4 when the
number of 2-O-translation tables equals 3 ~6.

The effects of MSA have been confirmed by measure-
ment for some benchmark jobs. The 2-O-translation
table maintenance overhead is significantly reduced
with MSA, which causes about a 10% reduction in the
mean instruction execution time, and about a 40 ~60%
reduction in the total CPU overhead.

Moreover, a prevention method of 2-O-translation
table double invalidation has also been proposed for
the temporary increase of the number of the OS’s active
virtual storage.

This performance improvement efficiently supports
an OS with multiple virtual storage running under VMS
using conventional hardware architecture.
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