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The 3-dimensional cellular reconfigurable array(abbreviated to 3-D CECOA) is a reconfigurable multiprocess-
ing system consisting of two uniformly interconnected network of cells, one of them is a rectangular array of
processing elements called the active cells (AT-cells) and the other is a 3-dimensional lattice array of switch cells
(SW-cells). This paper proposes a graph embedding algorithm, based on an edge-coloring technique for bipar-
tite graphs, which is concerned with the embedding of an arbitrary graph into 3-D CECOA, where edges of a
graph are mapped to paths in the array of SW-cells and nodes of a graph are mapped to AT-cells. The proposed
algorithm takes O(dn. log (dn)) time and O(dn) space and requires O((dn)*/2) volume of SW-cells, where d and n
are the degree and the order of the given graph.

A distributed switch setting algorithm for establishing interconnection paths is called self-routing if each SW-
cell determines its own setting depending on the incoming routing data. This paper also proposes a self-routing
algorithm. Under this proposed self-routing algorithm, any interconnection path between AT-cells can be
established using 4(log ((dn)'/2)+ 3) bits of the routing data, where d and n are the degree and the order of the

given graph.

1. Introduction

Current integrated circuit technology is making feasi-
ble computer systems consisting of a large number of
processing modules. In order to establish some highly
efficient computing systems it is necessary to design
multiprocessing systems which are able to compute pro-
blems utilizing their maximal parallelism. One such ex-
pective computer architecture will be a reconfigurable
multiprocessing system [10, 11] which computes by con-
figuring a processor network [13} according to the given
problem. One of the most important but most difficult
problems in the design of a reconfigurable multiprocess-
ing system is the selection of an interconnection net-
work. The performance of MIMD type multiprocessor
systems depends mostly on the efficiency of their inter-
connection networks. Interconnection networks need to
possess properties, such as universality concerning
realizing any interconnection patterns, for suitability
for VLSI implementation. Several reconfigurable inter-
connection networks are studied in [9]. It is also
pointed out that a more flexible interconnection net-
work is required to establish a dataflow computing
system capable of executing a program using the max-
imal parallelism inherent to the problem [11].

In this paper, we shall propose a 3-dmensional
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cellular interconnection network(3-D CIN) as a
reconfigurable interconnection network which is univer-
sal concerning realizing any interconnection paths
among processors and being suitable for VLSI im-
plementation, and a reconfigurable multiprocessing
system called a 3-dimensional cellular reconfigurable ar-
ray(3-D CECOA) having a 3-D CIN as its interconnec-
tion network.

Here, we shall discuss mainly the graph embedding
algorithm which is universal concerning realizing any
given graph into 3-D CECOA. The graph embedding
algorithm is distributed into two algorithms. One of
them is the set-up algorithm which computes the data
for routing and the other is the routing algorithm which
performs the switch setting according to the routing
data.

In Section 2 we describe the formal definitions of this
model and some related concepts. In Section 3 we give a
more efficient algorithm based on the edge coloring of
bipartite graphs which assures us we can realize an ar-
bitrary graph into 3-D CECOA with reasonable cell
volume. The design of routing patterns, routing data
and routing algorithm are discussed in Section 4. Final-
ly, Section 5 concludes the paper.

2. Formal Framework
2.1 3-D CECOA system

A three dimensional cellular reconfigurable array(3-D
CECOA) system is a parallelepiped regular array of
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Fig. 2 Several examples of AT-cell organization.

two kinds of cells, one of which is the processing cell
called the active cell(AT-cell) located at the bottom, and
the other is the switch cell(SW-cell). The three dimen-
sional lattice array of SW-cells is called the 3-dimen-
sional cellular interconnection network(3-D CIN). By
setting the switches of each SW-cell of the CIN cor-
responding to any given graphs we can realize connec-
tion topologies among the AT-cells which are
homeomorphic to them. The rough sketch of a 3-D
CECOA system is illustrated in Fig. 1, the 3-D CECOA
system consisting of pXg AT-cells is denoted by
Ci(pXxq).

2.1.1 Organization of AT-cells
We assume that the degree d of the graphs to be real-

ized in 3-D CECOA is arbitrary. When the degree of a
given graph is d, each AT-cell of the 3-D CECOA has
at least d ports. There are several different AT-cell
organizations and, as we will see later, the cell organiza-
tion effects the required cell volume in the 3-D CIN. In
order to reduce the required layers of a 3-D CIN, i.e.,
the size of the 3-D CIN, we distinguish the ports of each
AT-cell to out-ports and in-ports. However, this restric-
tion is not essential because bilateral communication is
possible for the 3-D CIN by altering the mechanism of
the cells moderately. Several examples of AT-cells for
degree d graphs are illustrated in Fig. 2, where @ and X
denote the out-ports and in-ports, respectively.

-



An Efficient Graph Embedding Algorithm for a Three-Dimensional Cellular Reconfigurable Array 129

2.1.2 3-D CIN

A 3-D CIN is a network which is composed of iden-
tical SW-cells arrayed in a three dimensional lattice
structure. Each SW-cell has six ports and each port is
directly connected to a neighboring cell. A 3-D CIN con-
sists of O(m) layers and each layer consists of psX tq
SW-cells, where m=max (ps, gt)/2. The port of a SW-
cell at the first layer which is connected to the AT-cell is
called a terminal of the 3-D CIN(Fig. 1).

2.2 Basic definitions on graphs

An undirected graph(or simply graph) G is a pair (V,
E) where Vis the set of nodes, and E= {{u, v}; u, veV'}
is the set of edges. If E is replaced with an ordered pair
A={(u, v); u, veV'} then G=(V, A) is called a directed
graph(or simply digraph). Any such pair (u, v) is called
an arc. Considering the graph as a d-way graph, if it is
necessary to distinguish the edges(or arcs) adjacent with
a node v, then we represent them such as (v, i), (v, j)
etc. A walk of a graph G is an alternating sequence of
nodes and edges vo, €, V1, €1, V2, . . ., Un—1, €x, U, beginn-
ing and ending with nodes, in which each edge is inci-
dent with the two nodes immediately preceding and
following it. This may also be denoted vo, vy, . . ., v,. It
is a trail if all the edges are distinct, and a path if all the
nodes are distinct. A walk is called eulerian if it
traverses each edge once, goes through all nodes and
ends at the starting node. An euler partition is a parti-
tion of the edges of a graph into open and closed paths,
so each node of odd degree is the end of exactly one
open path, and each vertex of even degree is the end of

no open paths. A bipartite graph(or simply bigraph) is a
graph whose node set ¥ can be partitioned into two dis-
joint subsets V; and V, such that every edge of G joins
V, with V;. If more than one edge can join two
nodes(multiple edges), then it is called a multigraph.
For more detailed terminology refer to [5]. The graph
of the k-dimensional cellular array is denoted C,=(C%,
Si), where Cj is the k-fold Cartesian product of integer
set I, i.e., I* and S;={(v, v+s); veV, 5,=(, . . ., I,
0,...,0), i=1,..., k}. In this paper we only deal
with the case k=3.

2.3 Basic concepts on graph embedding

To realize any computation problems described by
high level languages or dataflow languages into a 3-D
CECOA, the computation problems are transformed
into dataflow graphs and then the transformed dataflow
graphs are embedded into the 3-D CECOA [12]. To
embed any dataflow graphs into a 3-D CECOA, the
graph embedding is considered to be a mapping func-
tion f=(f), f2) where fi maps the nodes of the graphs
into AT-cells and f; maps the edges of the graphs into a
3-D CIN as interconnection paths among AT-cells satis-
fying the following conditions:

1) Duplicated use of the same port is not allowed.

2) Overlappings among interconnection paths are

not allowed.

3) Crossings among interconnection lines are not

allowed.

Interconnection paths in a 3-D CIN are considered as
one-to-one mappings of the terminals of a 3-D CIN
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Fig. 3 Routing patterns.
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under the restriction of the AT-cells assignment (Fig. 3).

From VLSI algorithm viewpoints the graph embed-
ding problem can be taken as the hardware algorithm
realization on chips, considering the graphs to be cir-
cuits. It has already been shown that any graph of
degree six can be embedded in a three-dimensional
cellular array using O(r*?) cell [4, 7, 8], where n is the
order of graphs. Therefore the 3-D CIN has to be con-
structed using cn*? SW-cells though the constant c¢
should be taken as small as possible. It should be noted
that there exist some differences between the VLSI
algorithm realization problem and the interconnection
pattern realization problem in 3-D CIN.

In the VLSI algorithm realization problem the given
algorithm has to be embedded optimally under the area
time estimation and the efficiency of the embedding is
not important because the constructed VLSI algorithms
are fixed. On the other hand, in the interconnection pat-
terns realization problem, the main point is to design an
efficient realization algorithm because the interconnec-
tion patterns will be reconfigured very often and the size
of the 3-D CIN must be designed as small as possible
taking into account the worst case.

Definition 1. An embedding f=(fi, f2) of G=(V, E)
in C;=(Cji, S3%), i=1, 2, 3, is a mapping defined as
follows:

1) fi is an injection from VX({l,..., d} into
Cix{l, ..., p} called the cell-port assignment,
where d and p are the degree of G and the
number of ports of an AT-cell respectively,

2) f; maps E into the paths of C; such that every
pair of such paths is edge disjoint.

The graph embedding algorithm is divided into two
algorithms, one of them is the set-up algorithm which
determines a mapping f; and the other is the routing
algorithm which establishes the interconnection paths
in 3-D CIN using the data obtained by the set-up
algorithm, i.e., the construction of f;.

3. Set-Up Algorithm

The set-up algorithm consists of two procedures, i.e.,
the cell-port assignment and the layer assignment pro-
cedures.

3.1 Cell-port assignment procedure.

The cell-port assignment procedure can be described

as follows:

1) Transformation to digraph: This procedure
transforms a given graph to a digraph by assign-
ing directions to each edge.

2) Cell assignment: This procedure defines the map-
ping w, from node set ¥ to the AT-cell set.

3) Port assignment: This procedure defines the map-
ping w; from VX {1, . . .,d}tow (V)X {1, .. .,
st}.

Proposition 1. Let G be an arbitrary graph of degree
d and of order n. Then G can be transformed to a
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digraph G* such that if d is even, then the outdegree
and the indegree of each node are both d/2, and if d is
odd, then one of the degrees of each node is (d+1)/2
and the other is (d—1)/2. The algorithm takes O(dn)
time and O(dn) space.

Proof: There are an even number of nodes of odd
degree. Accordingly we can transform G to a graph G,

. containing only even degree nodes by adding some

edges to odd nodes. It is easy to see that this takes O(n)
time steps.

Since G, is eulerian [5], we find an eulerian trail. It is
well known that the algorithm to find an eulerian trail
take O(e) time steps [1]. Next we assign each edge of G,
a direction according to the direction of its eulerian
trail. Let the resulting graph be G,=(V, A). From G,,
we delete the arcs which were added in the first stage of
this procedure. Let the resulting graph be G*=(V, A*).
Clearly G*=(V, A™*) satisfies the condition of Proposi-
tion 1. @

Cell assignment is important to establish a compact
CIN. Intuitively, the nodes adjacent with each other
should be embedded into neighboring cells, but such a
property depends on the characteristics of the given
graphs. Therefore we don’t here specify this procedure
precisely, but the best cell assignments have been de-
vised for trees, cubes and matrices [4], etc. The formal
definition of cell-port assignment f,=(w,, w,) is given
as follows:

a) o is an injection from V into Cj where C}={(x,

¥, 0); 0<x<p, 0<y<gq!, and n is the order of V

and n=pXgq.
b) w, is an injection from VX {1, ..., d} into
Cix {1, ..., st} such that
i)  wi((v, 7)) is an out-port of wi(v) if (v, i) is an
out-arc of v,
ii) wi((v, i) is an in-port of w(v) if (v, i) is an in-
arc of v.

The cell-port assignment mapping f, is the composi-
tion of w; and w,, i.e., (w;, w,) defined as follows:

(@1, W)((@, D)= (wi(v), waAv, 1))
for any

@, HeVx|{l, ... d}.

3.2 Layer assignment

In order to determine f;, we use the layer assignment
procedure. The layer assignment procedure can be
described as follows:

1) Construct a bipartite graph G of order sp+tq
and of degree at most D=max ([S/27 .p, [t/
2].9),

2) Edge color Gp,

3) Foracolori, 1<i<D, construct the routing data
of the interconnection paths using the routing
patterns illustrated in Fig. 3, where n<p X q and
d<sXt.
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3.2.1 Bipartite graph representation

It has been shown that the lower bound for volume to
embed any permutation of n-inputs in 3-D VLSI is
Q((n)*) [8]. We shall show in this section an algorithm
which realize any graph of degree d and of order nin a
3-D CIN with O((dn)*’?) cells though its time complexi-
ty is polynomial. We assume here that the 3-D CECOA
consists of pXq AT-cells and each AT-cell possesses
s Xt ports. By using only our proposed four connection
patterns (Fig. 3), we can transform any mapped graph
G in 3-D CECOA to a bipartite graph Gz. The pro-
cedure to construct a bipartite graph Gz can be de-
scribed as follows:
Procedure: Bipartite graph construction
Input; A graph G=(V, E);

A cell-port assignment f,=(w,, w,).

begin:

(1) Partition each AT-cell into sXt¢ smaller
segments, and associate the points 7; and c¢; to
the j-th row and the i-th column, where
1<j<tXq, 1<i<sXp.

(This is illustrated in Fig. 4)

(2) From G we derive a directed graph G*=(V, A).
(3) Define the (multi) graph Gs=(X, B) such that
) X={{rUlal; 1<j<tXq, 1<i<sXpl.

@) B={{r; al; flu, a)er;, flv, b)ec,,
{(u, a), (v, b)leA},
where a, b are the labels of this edge.

end.

Proposition 2. The graph Gz=(W, B) is a bipartite
graph of order sp+¢g and of degree at most max ( [s/
27 .p, [t/2] .q). (The size of Gj is the same as G)

Proof: From the construction of Gs, the edges exist
only from row node to column node. Hence G; is a
bipartite graph. The order is equal to the total number
of row nodes and column nodes. Since the number of
out-port (in-port) of each row and of each column of an
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Fig. 4 Bipartite graph representation of G.
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AT-cell are at most [s/27] and [#/27 respectively, the
total number of edges connected to out-ports (in-ports)
of each row and column of the first layer are at most
[s/27 .p and [¢/27] .q respectively. @

3.2.2 Layer assignment by edge-coloring graph

An edge-coloring of a graph G is an assignment of col-
ors to its edges so that no two adjacent edges are as-
signed the same color. Generally the problem of edge-
coloring belongs to the class of NP-complete problems,
but for the class of bipartite graphs more efficient
algorithms are available.

We use the modified algorithm of color-by-partition
[3]. It is to be noted that the minimum number of re-
quired colors is equal to the degree of the bipartite
graph.

Lemma 1. Modified color-by-partition algorithm
finds a minimum coloring, in time O(| ¥|?log | V|) and
space O(|E|+|V]|), where |V| and |E| denote the
order and size of Gjp respectively.

Procedure: color-by-partition [3].

comment: G is a bipartite graph, all of whose edges
are uncolored. A minimum coloring of G is found.
begin:

let D be the maximum degree in G;

if D=1 then color all edges in G using a new color,

else begin;

divide G into edge-disjoint subgraphs G, and G;

having maximum degree D, and D,, where D,

D,< [D/27] and G, has no more edges than G

(euler partition [2});

color-by-partition (G,);

remove the edges of r colors from G, and add them

to G,

where r= [2i°8@/27] —D,;

euler color [2] (G,); comment: now the coloring of
G, and G, gives a D-coloring

~Mg
~E

WY

N
N

g
NG

(b)
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Table 1 AT-cell organization and required SW-cells. x! 2 .3 xl .3
x! L 2 i P
Cell types .2 A‘ 77 .‘! X @7 x
I it S o4 x & A‘ 7 o
. AL A2 A3 A4 (@) d=3s=2. (b)d=t4,s=2.
Colors(layers) b 4 f\/:ﬂ (©d=5,5=3. )d=6,5= 3.
y 2" i 2 [N @ x| & @ x| o &
Area of one AT-cell d d & d Z 1 i MR 1
Area of one layer dm?* dm? &’ dn? 3 .‘ x .1 X 5 VAN .]3 xz
Required SW-cells Lo L gy WM Bl L bl ol x| X
q 2 4m m 2 e)d=7,s=3. (¢)d=8,9=3. g)d =9,5=3.
m=p=q=[n]. NGEG o] Yo
i P NESE
. 4 [ 2
or D+ 1-coloring of G; Yoyl 2 3 @Y x
if G is not D-colored o4 x1 2| x o4 <1 2|«
then begin; h)d=10,s=4. (i)yd=1, s=4.

make all edges of some color # uncolored;
for all uncolored edges e do augment [3] (e);
end.
end.
end color-by-partition.
We assign the edge colored by “b’’ to the b-th layer

of the 3-D CIN.
Since the usable routing patterns are restricted to the
ones of Fig. 3, no overlapping arises among interconnec-
tion paths. This completes the construction of the mapp-
ing f2.
Lemma 2. Let Gy by any bigraph. Then Gz can be
realized in 3-D CIN without overlapping using the 4
routing patterns in Fig. 3.
Theorem 1. An arbitrary graph G of degree d and of
order n can be realized in 3-D CECOA using at most
D=max ([s/2].p, [t/2] .q) layers.
Proof: For G, the bipartite graph G is of degree
D=max ([s/27].p, [t/2] .q) and of order V=s.p+1.q
by Proposition 2. Hence Gz can be D colorable. This im-
plies that Gz can be embedded using D layers. @
Example 1: The degree of derived bipartite graphs cor-
responding to the AT-cells (A1), (A2), (A3) and (A4) of
Fig. 2 are given as (dm)/2, (dm)/4, m and (d'*m)/2,
respectively. The required volume of 3-D CIN, etc., are
also given in Table 1.

3.3 AT-cell organization for compact 3-D CIN

From the results of previous section, the number of
required layers depends on the organization of the AT-
cell. In order to reduce the number of required layers,
we have to construct the bipartite graph of smallest
possible degree. As we can observe in Table 1, an in-
teresting AT-cell is the one of (A4) in Fig. 2, which is
designed using the property of Latin squares.

A Latin square is a matrix having integers as its com-
ponents of such that each distinct integer occurs exactly
once in each row and each column of it. For designing
an AT-cell of d-ports, we use a s X s Latin square, where
S:d /271 .

Roughly speaking we assign the ports of even number
to either the out-arcs or the in-arcs, and the odd ones to

Fig. 5 AT-cell organization based on Latin square.
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Fig. 6 For example 2.

the remaining arcs. If the number of out-arcs(or in-
arcs) of certain nodes exceeds d/2, then an extra port
not used is to be assigned further (Fig. 5). It is noted
that the number of out-ports(or in-ports) in each col-
umn or each row of the matrix is at most s/2, where

s=d ",
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Fig. 7 Routing algorithm.

Theorem 2. (Main theorem) An arbitrary graph G of
degree d and of order n can be realized in CIN with
D=(1/2)(dn)"? layers and therefore with (1/2)(dn)*>
SW-cells. The realization algorithm runs in O(dn. log
(dn)) time and O(dn) area.

Proof: From the construction of standard AT-cell we
have

s=t= l—dl/Z"l , p=q= rnl/z-l .

Hence the order, the size and the degree of the derived
bipartite graph are given as follows:

| V|=2(dn)"?, |E|=(dn)/2 and |D|=(1/2)(dn)"?.

By applying these relations to Theorem 1 and Lemma 1,
we obtain the results. @

Example 2: We embed the graph given in Fig. 6(a).
First we define the cell-port assignment f,=(w,, w) as
given in Fig. 6(b). Under this mapping fi, the bigraph
Gz is obtained as shown in Fig. 6(c). Thus we have the in-
terconnection of Fig. 6(d).

4. Routing Algorithm

4.1 Routing patterns

In general there are a number of routing patterns to
realize an arc of the graphs in a 3-D CIN. If we use
some complex routing patterns, then complex routing
data may be required. It is also noted that the volume of
the required SW-cell is O((dn)*?) even if some
sophisticated routing patterns are used, where d and n
are the degree and the order of the given graph. From
these reasons, we adopt the routing patterns illustrated
in Fig. 3.

4.2 Routing control mechanism

For routing control there are several methods such as
packet switching and circuit switching though the
described method is available for both cases. We show
the control mechanism for routing of the SW-cells in
Fig. 7(b), where I; connects with J, under the input di iff
the component (I, I;) is 1. We denote it as 6(J;, di)=Ix.
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4.3 Routing data

Since we use only the simple routing patterns il-
lustrated in Fig. 3, there are at most three direction
changing points of the routing patterns in 3-D CIN. For
the routing data, we have only to indicate the direction
changing point. For the SW-cells of a 3-D CIN, one
data of three bits is required to indicate the direction of
the routing respectively. If we use one data for one step
of routing, then the required routing data for the 3-D
CIN is O((dn)/? bits. To minimize the length of the
routing data, we apply the step count down procedure.
The step-count-down procedure can be described as
follows.

1) Code the total routing path length of each

routing direction into the binary representation.
It requires log (m) bits of data for this if the
length of the routing direction is m. Obviously,
m<(dn)'?. Therefore, each routing datum is in
the form of d, X ¢x, where d; is the routing direc-
tion information indicating the routing direction
and c is the routing path length information in-
dicating the number of necessary SW-cells to
realize the given routing path (Fig. 7(a)). The
routing data consists of four such data.

2) When a routing data passes a SW-cell, the data in-

dicating the routing path length are decreased by
one.

4.4 Self-routing Algorithm

A distributed switch setting mechanism for routing is
called self-routing if each switch cell determines its own
setting depending only on the preset incoming routing
data [6]. Now we shall present the self-routing
algorithm for each SW-cell of a 3-D CIN. The self-
routing algorithm can be described as follows:
Procedure: Self-routing (At each SW-cell)

Input: Routing data DDy, . . ., D(assume that the
routing data are received at a port [;), where
D,=d,Xc,and k<a<r.

begin:

a) Get the data c; of D.

I_f %0
then Dy is update to di X (c,—1) and connect [; to
(L), dy).
else Delete D, and get di+1 of Dy
Connect I; to 6(I;, di+1).

b) Send the routing data to the next SW-cell.
end;

The routing data at each direction changing point of
the routing paths in the 3-D CIN is illustrated in Fig.
7(c). Noted that in order to connect [; with I, the input
is always d; independent of the input port ;. By this pro-
perty we can show the routing procedure works correct-
ly.

Theorem 3. The routing procedure works correctly us-

ing routing data of length 4( [log (1'% + 3) bits if we

use the routing patterns of Fig. 3, where m is the total
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number of ports of the AT-cells, that is, if each AT-cell
possesses d-ports and n AT-cells exist, then m is dn.
Proof: We assume a situation such that the routing
data D;D;., . . ., Dy are routed to a port I,

Case 1: If Di=d;Xc; and ¢;> 1, then D; is updated
to d;X (ci—1), if diis *‘di’’, then I; is connected to I« by
D; according to the above discussion.

Case 2: If D;/=d;Xc; and ¢;=0, then D; is deleted
and the next data D;;=d;+ X ¢+, will be read. No mat-
ter what the present port /; may be, if div is “‘di”’, then
I; is connected to I by Di., according to the above
discussion.

This realizes the correct direction changing. By using
the step-count-down technique, the required routing
data for each direction routing is 3+ [log (m''?)7] and
there are at most four routing directions in 3-D CIN.
Therefore, the required routing data is 4( [log (m'%)]
+3). This concludes Theorem 3. @

Theorem 4. No deadlock occurs for the operation of
the self-routing procedure in the SW-cells of a 3-D
CIN.

Proof: From the set-up algorithm, the case such that
two or more connection paths are embedded on the
same row or column path never occurs. Thus, no two or
more routing data are routed through the same input
and/or the same output port at the same time.

Therefore, no deadlock occurs for the operation of
the self-routing procedure of each SW-cell of the 3-D
CIN. @

5. Conclusion

In this paper we mainly discussed the theoretical
aspects of 3-D CIN as an interconnection network for
the reconfigurable multiprocessing system 3-D CECOA
and it has been shown that the proposed 3-D CIN
possesses sufficient ability for such purpose. One of the
advantages of 3-D CIN is the possibility of parallel
switch settings. To establish a parallel, asynchronous
and complete distributive switch setting algorithm, a
more detailed SW-cell organization or communication
mechanism of a 3-D CIN must be studied. We im-
plemented also a layout system which outputs the inter-
connection patterns among AT-cells from the given
graph G and the cell-port assignment function. This can
be seen to be a simulator of the interconnection net-
work and it is ensured that the algorithm works quite
reasonably.

In order to construct a 3-D CECOA, it is also
necessary to study more precisely the I/O control
mechanism between host computer and CECOA
system, the total performance estimation etc. One of
the other attractive related research areas is the applica-
tion to hardware algorithm design based on a program-
mable model. Several interesting algorithms such as a
pattern matching machine, FFT, polynomial evaluation
etc., have also been discussed using this approach [12].
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