An Efficient String Searching Algorithm

ICHIRO SEMBA™

The string searching problem is to find all occurrences of a pattern in a text or to determine that none exists.
We measure the cost of the string searching algorithm by the number of comparisons performed between

characters of the pattern and the characters of the text.

We present an efficient string searching algorithm based on the idea of Knuth, Boyer-Moore and Knuth-
Morris-Pratt algorithms. It is shown that | n/m | <the cost <2n (where »n is the length of the text and m is the
length of the pattern). The preprocessing time is proved to be linear.

Computer tests indicate that for large size character set the average cost of our algorithm is less than that of

the Boyer-Moore algorithm.

1. Introduction

The string searching problem is to find all occur-
rences of a pattern in a text or to determine that none ex-
ists. In many information retrieval, artificial in-
telligence and text-editing applications it is necessary to
solve this problem as quick as possible. We measure the
cost of a string searching algorithm by the number of
comparisons performed between characters of the pat-
tern and the characters of the text.

In 1977, two efficient algorithms solving the problem
were proposed. They are the Boyer-Moore algorithm
(BM) [2] and the Knuth-Morris-Pratt algorithm (KMP)
[S]. The KMP algorithm attempts to match from the
left end of the pattern. On the other hand, the BM
algorithm attempts to match from the right end of the
pattern. This is a remarkable contrast.

Both the BM algorithm and the KMP algorithm have
good properties such as fast running time, linear
preprocessing and simplicity. The BM algorithm is
superior to the KMP algorithm on the best and average
case performance. In the KMP algorithm, all characters
in the text are examined. However the BM algorithm
often examines a fraction of the characters in the text.
Therefore it runs quickly in many applications. The
best case cost of the BM algorithm is | n/m | and the best
case cost of the KMP algorithm is #. On the other hand,
the KMP algorithm is superior to the BM algorithm for
the worst case performance. The worst case behaviour
in the KMP algorithm is linear, that is, the cost of the
KMP algorithm is bounded by 2n. The worst case
behaviour in the BM algorithm is not linear, because it
forgets all ‘previous information’ about characters
already matched when the pattern is moved to the right.

Several variations were proposed to improve the
worst case performance of the BM algorithm. Varia-

*Department of Pure and Applied Sciences, The college of Arts and
Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153,
Japan

Journal of Information Processing, Vol. 8, No. 2, 1985

tions described by Knuth [5] have gained the linear time
in the worst case, but lost the linear time in the
preprocessing. Galil [3] showed how to modify the BM
algorithm and proved that the worst case behaviour is
linear, that is, the cost of the Galil algorithm is
bounded by 14n. If the conjecture of Guibas and
QOdlyzko [4] is true, its bound is improved from 14n to
8n. The Galil variation preserves good properties of the
BM algorithm.

Recently, Apostolico and Giancarlo [1] have pro-
posed an efficient algorithm (the AG algorithm). They
have improved the BM algorithm and the Galil
algorithm. It remembers all ‘previous information’
about characters already matched when the pattern is
moved to the right. By using this information, it does
its job without examining the matched characters twice.
Therefore the worst case cost of the AG algorithm is
bounded by 2n. The preprocessing time is linear.

In this paper we will present an efficient string sear-
ching algorithm. The set of patterns of length m is di-
vided into three subsets and three efficient algorithms
suitable for each subset are presented. They are called
A, B and C. An efficient string searching algorithm can
be constructed by combining these three algorithms. It
is shown that | n/m | <the cost <2n. The preprocessing
time is proved to be linear.

2. Basic Idea

In this section we will show the basic idea.

First several notations are introduced.

The text is represented by an array text[1:n] and the
pattern is represented by an array pattern[l:m]. The
character at the position i in the text(pattern) is denoted
by text[i] for 1 <i=n (pattern[/] for 1 =i=m) and the
characters at positions i through j in the text for
l=isj=n (pattern for 1<i=j<m) is denoted by
text[i:j] (pattern{i:j]). Thus text[i:i] (pattern[i:i]) is
equal to text[i] (pattern[i]). If i>j, then text[i:j] (pat-
tern[i:j]) means an empty string. The notation text[i: j]

102

=pattern[k:/] means that for l=isjsn and

1=k=lsm, j—i=Il—k and text[i+ h]=pattern[k+hA]

(0=h=j—i). The notation pattern[i:j]=pattern[k:/]

has the same meaning.

Second we will define the quantity H(pattern[1:m]).

H(pattern[1:m])=max{ j| j=1or (1<j<m and

pattern[j] # pattern[i] (1 =i<j)}

Example. H(abcdef)=6, H(aaabbbccc)=7 and

H(aaaaa)=1.

Now we will show an overview of the basic searching
strategy. Implementations of the algorithms are de-
scribed in the section 3, 4 and 5.

(1) The pattern[m] is examined. If a match occurs,
then step (2) is executed. Otherwise, the pattern is
moved to the right by using the same heuristic in
the BM algorithm and other information. Then
step (1) is executed.

(2) The pattern[l:h] (pattern[l:A—1] if h=m) is ex-
amined from right to left, where h=H(pat-
tern[1:m]). If no mismatch occurs, then step (3) is
executed. Otherwise, the pattern is moved to the
right by using the property 4 and the fact that a
match has occurred at the position m in the pat-
tern. Then step (1) is executed.

(3) When h=m or m—1, the pattern has been found
and moved to the right by using the same informa-
tion as (2). Then step (1) is executed. When
l=h<m—1, the pattern[h+1:m—1] is examined
from left to right. If no mismatch occurs, then the
pattern has been found. Otherwise, the pattern is
moved to the right by using the same procedure as
the KMP algorithm. Then the KMP algorithm is
continued or step (1) is executed.

We can easily see that the worst case cost of our
algorithm is # when A=m. By the property of the KMP
algorithm, it follows that the worst case cost of our
algorithm is 2n when 1<h<m. However, with some
tricks, we can do our work without the KMP algorithm
for the pattern[l:m] such that [m/2] =H(pat-
tern[1:m]) <m and the worst case cost is expected to be
less than 2n. Therefore we have divided the set of pat-
terns of length m based on the character set {¢,, ¢;,° " *,
¢}, Q(gq, m), into three subsets and have developed
three string searching algorithms suitable for each
subset.

The set P(q, m, h) (1 =h=m) is defined as follows.

P(q, m, h)={pattern[1:m]|

pattern[1:m]eQ(q, m) and H(pattern{1:m])=h}

Three subsets are defined as follows.

(1) P(g, m, m)

@) P(g, m, m—1)UP(q, m, m—2)

U-+-UP(g, m, [m/2])

(3 P, m, [m/2]—1)

U---UP(g, m, 2)UP(q, m, 1)

Lastly we will show an interesting result related to the
set P(g, m, h) (1=h=m). This result will make clear
the difference between the sizes of the three subsets. The
binomial coefficient is denoted by C(i, /) and defined to

1. SEmBA

be zero if i<j. The second kind Stirling number is
denoted by S(i,).
Theorem 2.1. For l=sh=m,

|P(g, m, k)|
q if h=1
h—1

2 C(g—1, HSth—1, Dili+1)"*q if I<h=m
i=1

Proof. It is obvious that |P(q, m, 1)| =q. We fix the
character pattern[s]. We assume that the strings of
length A—1 (1 =i=<h—1) appearing on the left side of
pattern{h] contain / different characters ¢, ¢, -, ¢
chosen from g—1 possible characters other than pat-
tern[h). There are C(g—1, i) ways of choosing i
different characters and the number of those strings of
length A—1 is S(h—1, i)i!. Therefore there are C(g—1,
i)S(h—1, ii! different strings of length 4—1 on the left
side of pattern[A]. The strings of length m— h appearing
on the right side of pattern[k] have to be constructed
from i+1 characters pattern{#], ¢, -, ¢i.. Therefore
there are (i+1)"* different strings of length m—hA on
the right side of pattern[4]. Since pattern{#] is one of ¢
possible characters and 1<i<h—1, we obtain the
above results.
Example. The table |P(20, 10, k)| (1 sh=<10) is com-
puted.

>

(P20, 10, A)|

P
o

6453753955580
2605840197520
884589561080
240221603320
48548239880
6540071320
491266280
15007720
97280

20

- N W A LN 0 O

3. The Algorithm A

The algorithm A is designed to search a pattern of
length m included in the set P(g, m, m). This algorithm
is based on a similar idea of Knuth’s algorithm [5] pro-
posed for patterns of length m consisting of m different
characters. We note that algorithm A is identical with
Knuth’s algorithm for this pattern.

Two tables d[ch] (ch is included in the set {c), ¢z, ",
¢;}) and g[j] (1 =j=m) are precomputed and used in
algorithm A. They are defined as follows.

d[ch]=max{x| x=0 or

(0<x=m and pattern[x]=ch)}

This means that d[ch] is the rightmost position where
the character ch appears in the pattern[l:m]. If the
character ch is not found in the pattern[l:m], d[ch] is

An efficient string searching algorithm

defined to be zero.
gl/1=max{x| x=0 or
(0<x<, and pattern[x] =pattern[j])}

This means that g[/] is the rightmost position where
the character pattern[/] appears in the pattern[1:j—1].
If the character pattern[j] is not found in the pat-
tern[1:j—1], then g[j] is defined to be zero. We define
gl0]=0.

The processing of algorithm A can be divided into
three parts. The integer variables i, j(k) are used as a
pointer to the pattern(text). We suppose that the
character text[k} and the character pattern[j] are ex-
amined. We mean by i=0 that we have no ‘previous in-
formation’ about characters already matched.

Case Al.

text[k—(m—i)]=pattern[i] 0O<i<sm—1)

text[k] # pattern[m]

k-(m-i) k
¥ ¥
SRRSO 1] S Y S
i m
+ +
NS -3 SRS B |

Let textlk]=a and text[k—(m—i))=b. When a
mismatch occurs at the position m(k) in the pat-
tern(text), the pattern can be moved to the right.

If m—dlal=i—gfi], then the pattern will be moved
to the right by m—d{a] and the pointer i is set to d[a].

If m—d|a) <i—gl[i], then the pattern will be moved
to the right by m—g[d[a]] and the pointer i is set to
gldla]].

Then a new matching attempt is undertaken at the
position m(k+m—i) in the pattern(text).

k+m-dfa]

gli] i dla] m
¥ ¥ ¥ +
000 2 - S -3 SN N |
gli] i dla] m
+ + + +
N 13 DN =1 DO -V SR N |
k~(m-1i} k k+m-gld(a]l
¥ 4
DR ¢-) GO -3 BN %

glil. i gldla)] d(a) m

S, SUPRUS, SR S .

0 0 3 0 5 S £ 8
gli) i glala]]

+ + + + +
=) Y] G Y R Y I N

d{al m

Case A2.
text[k+ 1:k+ (m—j)]=pattern[j+1:m]
text{k] #pattern[j}(1=js=sm—1)

k k+(m-j)

103

When a mismatch occurs at the position j(k) in the
pattern(text), the pattern can be moved to the right by
m and the pointer i is set to zero. Then a new matching
attempt is undertaken at the position m(k+2m—j) in
the patter(text).

k k+(m-3) K+2ui-)
+ Yo v
R BN VXYY Y Y8 A S I.IC
J m
+ ¥
| S B e2 2R AN NA
_____________ :
11
Case A3. text[k+1:k+m]=pattern[1:m]
k k+m
4 Yo
CCIICI7I17177777777770770 770 DD DI
1 m

The pattern has been found. The pattern can be
moved to the right by m and the pointer i is set to zero.
Then a new matching attempt is undertaken at the posi-
tion m(k-+2m) in the pattern(text).

k k+m k+2m
+

The algorithm A is written in Pascal-like language
and shown in Fig. 1.
Example. We consider 6 possible characters a, b, ¢, d,
e, f and patternfl:7)=acbaacd included in the set P(6,
7, 7). The mismatched character is marked X and the
matched character is marked =. Two tables d[ch) and
giJj1 are precomputed.
We consider text —aaabbcbbcacaabbacdbbaaacbaac-
dabcbed.
begin
k:i=m; i=0;
1:
if k> n then stop;
if text[k] # pattern[m] then begin
{Case 1}
L=d[text[k]); if m—Izi—g[i] then i:=/ else i:=g[l];
k:=k+m—i; goto 1;
end;
Ji=my
2:{Case A2}
k:=k—1; ji=j—1,
if j=0 then goto 3;
if text[k] #pattern[;] then begin
i:=0; k:=k+2+*m—j; goto 1;
end;
goto 2;
3:(Case A3}
i:=0; k:=k+2+m; goto 1;
end.
Fig. 1. The algorithm A.

ch a b ¢ d e f

dichh 5 3 6 7 0 0

glj1 0 0 O O 1 4 2 O

aaabbcbbcacaabbacdbbaaacbaacdabebed
i=0 k= 7 x Case Al
acbaacd
aaabbcbbcacaabbacdbbaaacbaacdabebed
i=3 k=11 X Case A1l
acbaacd
aaabbcbbcacaabbacdbbaaacbaacdabebed
i=2 k=16 x Case A1
acbaacd
aaabbcbbcacaabbacdbbaaacbaacdabcbed
i=5 k=15 X=== Case A2
acbaacd
aaabbcbbcacaabbacdbbaaacbaacdabcbed
i=0 k=25 x Case A1l
acbhaacd
aaabbcbbcacaabbacdbbaaacbaacdabebed
=zz==== Case A3
acbaacd
(20 ko3 aaabbcbbecacaabbacdbbaaacbaacdabebed
i= =36

i=3 k=22
acbaacd

4. The Algorithm B

The algorithm B is designed to search a pattern of
length m included in the set P(g, m, h) ([m/2] =
h=m—1).

In addition to tables d[ch]) and g[/], three tables
ggljl O=j=m), flj] (h+1=j=m—1), f[m+1] and
JUJl (h+1=j=m—1) are precomputed and used in
algorithm B. The table f[/] is the same as the failure
function introduced in the KMP algorithm. The process-
ing of algorithm B is divided into five parts.

Case B1.

text[k—(m—i)]=pattern[i] O<i=m—1)

text[k] # pattern[m]

The processing of this case is the same as that of case
Al.

Case B2.
text[k+ (m— h)] =pattern[m]
text[k] # pattern[A]
k k+(m-h)
¥
CLIIITIIITTIIIe[ITIIIafoIIoIIITIIIoITIITIIIIIT
h m
__________ LS.
| LI Y

When a mismatch occurs at the position A(k) in the
pattern(text), the pattern can be moved to the right. Let
text[k+(m—h))=a and text[k]=b. We define gg[0] as
follows.

max{x| x=0 or

(0<x=m—h and pattern[x]=pattern[m])}.

This means that gg[0] is the rightmost position in the
patternfl:m—h] where the character is equal to pat-
tern[m]. When d[b] =0, the pattern will be moved to the
right by m—gg[0] and the pointer / is set to gg[0].

I. SEMBA

k k+(m-h) k+2m-h-gg{0]
+ ¥
L IIITTTITTTIIB[IITIIATTITIIIIIITIIICIIIIIIIIII
gg(01] h m
ISR S S
NN 3 i W SRS -7
ggl0]l h m

+ ¥ +
DN 3 SIS 0 B -3

When d[b]>0, we have to examine whether the
pointer x (m—h<xsm—1), such that pattern
[x—(m—h))=>b and pattern[x]=pattern[m], exists or
not. We define ggld[b]] (d[b] >0) as follows.

max{x| ggl[0] or

(m—h<x=m—1 and pattern[x—(m—h)]=>b
and pattern[x]=pattern[m])}.

If it is found, we can move the pattern to the right by
m—gg[d[b]] and the pointer i/ is set to gg[d[bl].

k k+(m-h) k+2m-h-gg(d(b])
¥

ggl(dib]] m
+

I:III:IEIZI:I:I&III%I

If it is not found, we can move the pattern to the right
by m—ggl[0]. The pointer / is set to gg[0].

A new matching attempt is undertaken at the position
m(k+2m—h—ggld[b]]) in the pattern(text).
Case B3.

text[k+ (m—j)]=pattern[m]

text[k+ 1:k+ (h—j)=pattern[j+1:h]

text[k] #pattern[j] (1=sj<h)
k k+(h-j) k+{m-3)
+ ¥ +
RSN B 47724 SR Y A
3j h m
B SN S
[CI201C17777712700 048]

When a mismatch occurs at the position j(k) in the
pattern(text), the pattern can be moved to the right by
m— gg[0] and the pointer / would be set to gg[0]. A new
matching attempt is undertaken at the position
m(k+2m—j—ggl[0]) in the pattern(text).

k k+(h-3) k+(m-3) k+2m-j-gg[0]
+ +

___________ M S
SoIIIIIE | A5 B) G S SR
ggl0] 3 h m
Yoot LR
[TIaITIC1777771 72 1&1
99001 j h m

Case B4.
text[k+ (m— h)] =pattern[m]
text[k—(j—1):k—1]=pattern[l:j—1]
text[k] #pattern[j] (h<j=m—1)

An efficient string searching algorithm

k-(3-1) k-(j-h) Kk k+(m-j)
¥ + ¥ +

RSN VE AR AR TN RN A N U Y S
1 h j m

In this case we use the table f[j] (h+1=<j<m—1)in-
troduced in the KMP algorithm.
flj]1=max{x| x=0 or
(1 =x<j and pattern[x] # patter[]
and pattern[l:x—1]=pattern[j—x+1:j—1])}
When a mismatch occurs at the position j(k) in the
pattern(text), the pattern can be moved to the right.
If pattern[m—j+f[j]]=pattern[m], then f[j] is
defined to be f[j]+m—,j. The pattern will be moved to
the right by m—ff[j1=j—f[/j] and the pointer i is set to
FU).

k-{3-1) k-(j-h) k k+{m-3) k+2m-j-££(j]
¥
Z:IZZIZéZZZZZZZZéZZIfI:IéIﬁZZZIZIIIZZZZ::ZZZZIZZ
1 h 3 m
3 PR
17a77717777a171_1-"1al
TOf(3) m-3+£[5] @
ISR S SR s
17771 17 falZii70Ial
1 ££(3) m
Gy Ly}
[7a771 171ali27771al

If pattern[m—j+f[j]] #pattern[m], then f[j] is
defined to be
max{x| x=0 or
(O<x<m—j+f[j] and pattern[x]=pattern[m])}.
The pattern will be moved to the right by m—f[/}
and the pointer / is set to ff[/].

k-(3-1) k-(j-h) k k+2m-j-£f£(3)

k+(m-3)

A new matching attempt is undertaken at the position
m(k+2m—j—ff[j]) in the pattern(text).

Case B5. text[k—(m—1):k]=pattern[1:m]
k-(m~1) k
ZZZZZIfZZZZZZZZZZZZZZZZZZZIZZZZZIIIZiiiiIIZZZZZ::
1 m
¥

The pattern has been found. In this case we use the
table f[m+1] introduced in the KMP algorithm.
SIm~+1]=max{x| x=0 or Q=x=m and
pattern[l:x— 1]=pattern[m—x+2:m])}

105

If f[m+1]=0, then the pattern will be moved to the
right by m and the pointer i is set to zero. A new mat-
ching attempt is undertaken at the position m(k+m) in
the pattern(text).

k-(m-1) k k+m
4 ¥
SN L0010 0 L LI UL L L0)) b S0
1 m
¥ ¥
12111111117171177111171
1 m
Yo !
| I1

If f[m+1]>0, then the pattern will be moved to the
right by m—f[m+1]+1 and the pointer i is set to
SfIm+1]—1. A new matching attempt is undertaken at
the position m(k+m— f[m+ 1]+ 1) in the pattern(text).

k-(m-1) k k+m-f(m+1]+1
¥ ¥ ¥
IS VAR XA XXX R R R R AR YA SUUSRN U S
1 m
¥ ¥
1177771111177177111111
1 fim+1] m
+ ¢
17727112227 °2777770 11

The algorithm B is written in a Pascal-like language
and shown in Fig. 2.
Example. We consider 6 possible characters a, b, ¢, d,
e, f and pattern[1:10]=abcabdacab included in the set
P(6, 10, 6). We consider text—abcabdabcbaabdbab-
babcbccabcaabcabdacabab.

ch a b ¢ d e f

dich} 9 10 8 6 0 0

glil] 6 0 0 0 1 2

goltjl 2 2 2 2 2 2 2 2 2 5 2

SU) 0 2 0 3

FU 2 2 0

abcabdabcbaabdbabbabcbccabcaabcabdacabab

i=0 k= 8 ======:3x = Case B4
abcabdacab
abcabdabcbaabdbabbabecbccabcaabecabdacabab

i=2 k=11 X=== = Case B3
abcabdacab

abcabdabcbaabdbabbabcbccabcaabcabdacabab

X = Case B2
abcabdacab

abcabdabcbaabdbabbabebecabcaabcabdacabab

i=2 k=34 x Case Bl

abcabdacab

i=2 k=22

i=6 k=38 s=s======= Case BS
abcabdacab
abcabdabcbaabdbabbabebecabcaabcabdacabab
i=2 k=46
abcabdacab

106

begin
k:=m; i=0;

1:

if k> n then stop;

if text[k] # pattern[m] then begin

{Case B1}
L=dltext[k]]; if m—I=i—g[i] then i:=] else i:=g[!];
k:=k+m—i; goto 1;

end;

{Case B2}

k:=k—(m—h); j:=h;

if text[k] # pattern[/] then begin
ir=ggldtext[k]]); k:=k~+2*m—h—i; goto 1;

end;

:{Case B3]}

k:=k—1; j:=j—1; if j/=0 then goto 3;

if text[k] # pattern[/] then begin

i:=gg[0l; k:=k+2*m—j—i; goto 1;

end;

goto 2;

[]

k:=k+h+1; j:=h+1;

:{Case B4}

if k> n then stop;

if j=m then goto 5;

if textfk]=pattern[/] then begin
k:=k+1; j:=j+1; goto 4;

end;

i=f1j]; k:=k+2*m—j—i; goto 1;

:{Case BS}

if f[m+1]=0
then begin i:=0; k:=k+m; end
else begin i:=f[m+1]—1; k:=k+m—i; end;

goto 1;

end.

»

wn

Fig. 2. The algorithm B.

5. The Algorithm C

The algorithm C is designed to search a pattern of
length m included in the set P(q, m, h) (1=h< [m/2]).

In addition to tables d{ck] and g[/j], two tables gg[j]
(O=j=m)and f[j] (1 =j=m++1) are precomputed and
used by algorithm C. The table f[/] is the same as the
failure function introduced in the KMP algorithm. The
processing of algorithm C is divided into five parts. The
processing of case Ci(l =i=<3) is similar to that of case
Bi(1=i=<3). The processing of case Ci(d=<i<5) is
different from that of case Bi(4=i<5).
Case C4.

text[k + (m—j))=pattern|m)

text[k—(j—1):k— 1]=pattern[l:j—1]

text[k] # pattern[j) (h<j=m—1)

k-{j-1) k-(j-h) k

k+(m-3)

When a mismatch occurs at the position j(k) in the
pattern(text), the pattern can be moved to the right by
J—fLjl. We note the fact that text[k+ (m—j)]=pat-
tern[m] is not used in this case.

I. SEMBA

If f[j]1=0, then a new matching attempt is under-
taken at the position m(k+m) in the pattern(text) and
the processing of case C1 starts. The pointer i is set to
zero.

k-{j-1) k-{j-h) k k+{m-3) k+m
+ ¥ + ¥ +
N VYR TTLY YRR O B 3 S) SO
1 h] m
¥ ¥ + +
1777717177777711717"1a1
1 m
+ +
| lal

If f[j]1>0, then a new matching attempt is under-
taken at the position f[j](k) in the pattern(text) and the
KMP algorithm is applied. While a mismatch occurs at
the position j and f[j]1>0, the KMP algorithm is con-
tinued. When f[j]1=0, the processing of case C1 starts.
The pointer i is set to zero.

k-{j-1}) k~(3-h) k

k+{m-3j})

Case C5. text[k—m:k—1]=pattern[l:m]

k-m k

The pattern has been found.

If f[m+1]=0, then the pattern can be moved to the
right by m and the pointer { would be set to zero. A new
matching attempt is undertaken at the position
m(k+m—1) in the pattern(text) and the processing of
case C1 starts.

k-m k k+m-1
¥ + ¥
JIIIII277777777772777777 721 CCTIITIT IO IIIIIINICIE
1 m
+ +
1777771777717117771711
1 m
d e t
| O 1

If f[m—+1]>0, then the pattern can be moved to the
right by m—f[m+1]+1 and the KMP algorithm starts
at the position f[m+1](k) in the pattern(text). While a
mismatch occurs at position j and f[j]>0, the KMP
algorithm is continued. When f[j]=0, the processing
of case C1 starts. The pointer i is set to zero.

An efficient string searching algorithm

k-m k

begin
k:=m; i:=0;
I:
if k> n then stop;
if text[k] + pattern[m] then begin
{Case C1}
l:=dltext[k]}; if m—Izi—g[i] then i:=/ else i:=g[/];
k:=k+m—i; goto 1;
end;
{Case C2}
k:=k—(m—h); j:=h;
if text[k] # pattern[/] then begin
ir=ggl[d[text[k}]]}; k:=k+2*m—h—i; goto 1;
end;
2:{Case C3}
k:=k—1; j:=j—1; if j=0 then goto 3;
if text[k] # pattern[/] then begin
i:=gg[0]; k:=k+2*m—j—i; goto 1;
end;
goto 2;
3:
ki=k+h+1; ji=h+1;
4:{Case C4)
if k> n then stop;
if /> m then goto 6;
5:
if text[k]=pattern[/] then begin
k:=k+1; j:=j+1; goto 4;
end;
B=fll
if j=0 then begin i:=0; k:=k+m; goto 1; end
else goto 5; {The KMP algorithm is executed }
6:{Case C5}
if f[m+1]=0 then begin i:=0; k:=k+m—1; end
else begin j : =f[m+1]; goto 5; end;
goto 1;
end.
Fig. 3. The algorithm C.

The algorithm C is written in a Pascal-like language
and shown in Fig. 3.
Example. We consider 6 possible characters a, b, ¢, d,
e, f and pattern[1:9]=abcdabcab included in the set
P(6, 9, 4). We consider text=abcdababbbaabdbab-
bababcdabcabbceabbbacbcea.

ch a b ¢ d e f

dichh 8 9 7 4 0 0

glj/l 0 0 0 O 0 1 2 3 5 6

ggljl 2 2 2 2 2 2 2 2 6 2

Sl o 1 1 1 0 1 1 4 1 3

107

abcdababbbaabdbabbababcdabcabbcabbbacbeca

1=0 k= 7 ======x = Case C4
abcdabcab
abcdababbbaabdbabbababcdabcabbcabbbacbea

i=0 k= 9 ==X Case C4

abcdabcab

abcdababbbaabdbabbababedabcabbcabbbacbea

i=0 k= 9 x Case C4

abcdabcab

abcdababbbaabdbabbababcdabcabbecabbbacbea

i=0 k=13 x = Case C2

abcdabcab

abcdababbbaabdbabbababcdabcabbecabbbacbeca

i=2 k=25 x Case C1

abcdabcab

abcdababbbaabdbabbababcdabecabbcabbbacbea

i=5 k=30 ========= Case CS

abcdabcab

abcdababbbaabdbabbababcdabcabbcabbbacbea

1=5 k=30 x Case C5

abcdabcab

abcdababbbaabdbabbababcdabcabbecabbbacbea

i=5 k=30 x Case C5

abcdabcab

abcdababbbaabdbabbababedabcabbecabbbachca

i=0 k=39 Case C1

x
abcdabcab
abcdababbbaabdbabbababcdabcabbcabbbacbca
i=7 k=41
abcdabcab

6. Cost of algorithms

We measure the cost of the string searching algorithm
by the number of comparisons performed between
characters of the pattern and characters of the text. In
order to estimate the worst case cost, we consider the
ratio of the number of comparisons performed (from
the start of new matching attempt to the occurrence of a
mismatch) to the movement of the pattern caused by a
mismatch. It follows that the worst case cost is less than
or equal to the maximum ratio times n. The following
theorem is obvious.

Theorem 6.1 For a pattern included in the set P(q, m,
m), | n/m]| <the cost of the algorithm A=<n.

We denote by r[j] (1 =j=5) the maximum ratio for
each case Bj.
Theorem 6.2 For a pattern included in the set P(q, m,
h) ([m/2] =shsm—1),

n/m| <the cost of the algorithm B
= max{rljlln=2n.
1sjs5

Proof. The best case cost is easily derived.
Case B1.

It is obvious that r[1] =< 1.
Case B2.

The number of comparisons=2.

The movement=m—ggl[d|ch]].

It follows that r[2] =max{2/(m—ggldchl])}.

By the fact that ggl{d[ch]]=m—1, it is derived that

r2)=2.
Case B3.

The number of comparisons=h—j+2 (1<j=sh—1).

The movement=m—gg[0].

It follows that

rl3]=l=njr,13x_] {th—j+2)/(m—ggl0])}

=(h+1)/(m—ggl0]).
By the fact that gg{0l=m—h and h= [m/27], we
can conclude that r[3]=(h+1)/h=2.

108

Case B4.
The number of comparisons=j+1 (h+1sj=m—1).
The movement=m—f[/].

1. SemBA

Table 1 Computer tests. The ratio means the average cost of our
algorithm/the average cost of the BM algorithm.

BM algorithm Our algorithm

It follows [hat q m average cost average cost ratio
ri41=, max {(j+1/tm—FLD}. 2 4 10202 8480 831
tlaismo 2 6 8162 8902 1.091
By the fact that ff[j]=m—h, we can conclude that 2 8 7225 8864 1.227
Hal<m/h<2. 210 6147 8485 1.380
C s[]B_S /h= 2 12 5874 8720 1.485
ase Bo. . 2 14 5263 8541 1.623
The number of comparisons=m. 216 5041 8060 1.599
The movement BN
3 3 7245 6491 .896
(m if f[m+l]=0 3 6 5232 4514 .863
= . F14+1 if flm+1]>0 3 9 4394 3802 .865
m—flm . 3012 3919 3502 .894
315 3699 3332 .901
It follows that 318 3559 3418 960
. _ 3 21 3282 3376 1.029
r[5]:{1 if flm+1]=0. 3 24 3082 3221 1.045
m/(m—flm+1]+1) if flm+1]>0. LY 3057 3308 1.082
By the fact that f[m+1] =m—h-+1, we can conclude 4 4 4919 4562 927
that r(S]<m/h=<2. 4 8 3412 2866 .840
Theorem 6.3 For a pattern included in the set P(q, m 4 12 3100 2451 791
. p q, m, 4 16 2793 2234 .800
h) (1sh< [m/27), 4 20 2611 2097 803
L n/m] =<the cost of the algorithm C <2n. 4 24 2534 2123 838
Proof. The best case cost is easily derived. 4 28 2521 2092 -830
Let L be the total length of the substrings in the text 4 % 2408 2087 867
to which the KMP algorithm is applied. We can con- 8 4 2445 3361 .976
clude that the cost < 2L for those substrings. When the 8 8 2142 1936 -904
KMP algorithm is not working, it is shown that the max- g ;3 } 33 :S?g _7/33
imum ratio<2 in a s;mllar way. 8 1 1322 930 703
Therefore we obtain the above result. 8 40 1326 893 673
Example. We show the ratio r[j} (1= ,=<S5) of a pat- 8 48 1255 860 .685
tern included iri the set P(q, m, h) ([m/2])=sh=m—1). 8 56 1274 889 .698
8 64 1230 866 .704
16 4 2930 2906 .992
pattern m h (1] r2) r{3] r[4) r[s] max 16 8 1646 1589 965
16 16 1024 913 .892
abedec 6 5 1/1 2/3 6/6 6/6 1/1 16 1 746 577 m
16 48 671 481 7
aaaatiblﬂ)i(i:b 7 107 9 /1 2/2 10/10 10/10 1/1 16 4 659 a 671
abababcb 87 1/1 2/2 8/8 8/8 /1 32 4 2706 2700 .998
— 32 8 1437 1421 .989
abababca 8 7 1/1 2/3 8/7 8/7 8/7 32 16 803 771 .960
- 32 32 507 445 .878
aabbccb 75 1/t 2/3 6/7 77 777 1/1 32 64 364 281 772
aabbcce 75 1/1 2/1 6/7 7/7 7/7 2/1
aabbeca 75 U125 65 1/ 16 /s 7. Computation of tables
babcab 75 1/1 2/3 /s 7/7 75 15
ababea / / / / / / In this section we will show the method of computing
abcabc 63 1/1 2/3 4/3 6/6 6/3 6/3 tables used in algorithm A, B and C. We can easily see
- — that the time required to compute each table is linear.

abcdabed 8 4 1/1 2/4 5/4 8/8 8/4 8/4

abbabbcabc 107 1/1 2/3 8/10 10/10 10/10 1/1

We note that several patterns exist with maximum
ratios of less than 2.

Program. The tables d[ch] (chelci, ¢, -+, ¢;}) and
glilt 0=j=m).
for i:=1to q do d[c]):=0;
g[0):=0;
for j:=1 to m do begin
glj]:=d[pattern[j]]; d[pattern[j]]: =/;
end;

An efficient string searching algorithm

Program. The quantity H(pattern[l:m]).
h:=m;
while g[h) 0 do h:=h—1;

Program.
Ji=m;
while g[j]1>m—h do j:=g[/];
99[0]:=glj);
for j:=1 to m do gg[j]:=gg[0];
Ji=m;
while g[j]>m—h do begin
i:=d[pattern[g[j]—(m—h)]];
if ggli]=gg[0] then gg[i]:=g[/1;
Ji=glik

end;

The table gg[j) (0<j=m).

We assume that the table f[j] (h+1=<j=m+1) is
prepared. First w[j] (1=js<m—h) is determined. We
mean by w[j]

max{i| i=0 or

(0<i=j and pattern[i]=pattern[m])}.

Program. The table f[j] (h+1=j=m—1).
Ji:=0;
for j:=1 to m—h do begin
if pattern[j]=pattern[m] then begin
wlil:=J; Jjj:=J;
end else w{j]:=jj;
end;
for j:=h+1 to m—1 do begin
if pattern[f[j]+m—j}# pattern[m) then
FUL=wlfljl+m—j] else f1j):=f1j}+m—j;
+m—j;
end;

109

8. Computer tests

We have examined the costs of the BM algorithm and
our algorithm for texts and patterns which are
generated under the assumption that g possible
characters appear uniformly. Computer tests have been
done for g (¢=2, 3, 4, 8, 16, 32). We have searched 100
patterns of length m in a text of length 10000. The
results are shown in Table 1 and indicate that for a large
q the average cost of our algorithm is less than that of
the BM algorithm. We note that most parts of the text
were examined at most once by the BM algorithm for a
large gq.

Acknowlegement

The author would like to thank Prof. Shimizu, Prof.
Nozaki, Prof. Kobayashi and Prof. Noshita for their
hearty encouragements. The author wish to thank the
referees for carefully reading this paper and valuable ad-
vices.

References

1. Apostolico, A. and Giancarlo, R., The Boyer-Moore-Galil String
Searching Strategies Revisited (to appear).

2. Boyer, R. S. and Moore, J. S., A Fast String Matching
Algorithm, Comm. ACM, 20, 10 (1977), 762-772.

3. Galil, Z., On Improving the Worst Case Running Time of the
Boyer-Moore String Matching Algorithm, Comm. ACM, 22, 9(1979),
505-508.

4. Guibas, L. J. and Odlyzko, A. M., A New Proof of the Linearity
of the Boyer-Moore String Searching Algorithm, SIAM J. Com-
puting, 9, 4 (1980), 672-682.

5. Kunuth, D. E., Morris, J. H. and Pratt, V. R., Fast Pattern Mat-
ching in Strings, SIAM J. Computing, 6, 2(1977), 323-350.

6. Liu C. L., Introduction to Combinatorial Mathematics.

(Received August 22, 1984; revised April 12, 1985)

