Application and Composition in Functional
Programming

HiROFUMI YOKOUCHI*

Functional programming is examined in a theoretical manner. We start with the consideration that there are
two kinds of functional programming languages: (1) applicative languages (LISP, ML, KRC) and (2) composi-
tional languages (FP). To formalize these types of programming languages, we will define two formal systems:
the typed A-calculus with product, corresponding to the applicative languages, and the composition calculus,
corresponding to the compositional languages. Then, we will show that both formal systems are essentially the
same. This result is an application of recent work about the relationship between the A-calculus and category

theory.

1. Introduction

This paper deals with functional programming
languages in the theoretical sense. We focus on a
difference in the basic operations that construct pro-
grams from primitive functions. Functional program-
ming languages are classified into two types as follows:

(1) LISP, ML¥, KRC®, etc., and

(2) FP(FFP)i23,

The former are based on application and A-abstraction,
and the latter are based on composition. We call these
two types of languages applicative languages and com-
positional languages. We should notice especially that
the compositional languages are defined without
variables. This is the most remarkable characteristic of
the compositional languages.

In this paper we formalize these two types of
languages. For the applicative languages we use the A-
calculus. For the compositional languages, we in-
troduce a formal system called the composition
calculus. The composition calculus resembles Backus
FP except that the composition calculus includes an
operation A(f) corresponding to the curried function
of f. We examine the relationship between the A-
calculus and the composition calculus, and we show
that the two formal systems have the same descriptive
power. It is clear that composition can be represented
by application and A-abstraction. For example, the com-
posite g ° f of two functions f and g is expressed as
Ax.g(f(x)). However, the question is whether applica-
tion and A-abstraction can be represented by composi-
tion. In other words, can we naturally formalize the
composition calculus so that it has the same descriptive
power as the A-calculus?

This paper mainly deals with typed languages for
both applicative languages and compositional
languages, because the concept of type is naturally in-
troduced into functional programming. But the entire

*Science Institute, IBM Japan, Ltd.

Journal of Information Processing, Vol. 8, No. 3, 1985

discussion in this paper can be immediately carried over
to type-free languages. For typed languages it is impor-
tant to choose the set of types. We take two operations
(—)X(—) and (=)'’ that construct new types from
given types. For each pair of types @ and b, aXb is a
type that intuitively represents the product of @ and b,
and b represents the set of functions from a to b. The
mechanism of product is essential for compositional
languages. This situation is different from the A-
calculus.

In Section 2, we define the typed A-calculus with pro-
duct, and in Section 3, we define the typed composition
calculus. In Sectiond, we show that both formal system
are essentially the same.

2. The typed A-calculus with product

The typed A-calculus with product is defined by ad-
ding pairing operations { —, —) and projections 7, and
72 to the usual A-calculus®. In this paper, however, we
define the formal system without using the projections,
the reason being twofold: (1) to maintain a cor-
respondence with conventional programming languages
and (2) to simplify the proof of the Equivalence
Theorem to be presented in Section 4. Also we intend to
make the system explicitly express functions that have
more than two variables. In the usual A-calculus, the A-
abstraction is defined against only one variable.
However, we directly define A-abstraction against a se-
quence of variables. In most programming languages,
more than two variables may be given as formal
parameters in declarations of functions or procedures.
In order to formalize this mechanism, we introduce a tu-
Dple variable that represents a sequence of variables.

Below we give the formal definition of the typed A-
calculus with product, which we simply call the A-
calculus.

Definition. (Type)

A set of types is a set P equipped with structure (1,

(—)X(—), (—))), where leP, and (—)X(—) and

218

(—)" are binary functions from PXP to P.

In this paper, a type may be regarded as a domain of
functions. More rigorously a type is a name of a do-
main. Type 1 means a singleton set. Type 1 is intro-
duced for a technical reason. We regard a 0-ary func-
tion as a function from type 1.

A language of the A-calculus consists of variables and
constants. Whenever a constant & is given, a type of k is
uniquely determined. At least one constant with type 1
is always given. We arbitrarily choose one, denoted by
{), and fix it. For each type a, the A-calculus has in-
finitely many variables with type a. We regard a
language as determined when a set of types and con-
stants are specified.

We give some notations for languages of the A-
calculus.

Definition. (Tuple variable)

A tuple variable with type is inductively defined as
follows:

(1) every variable with type a is a tuple variable with
type a;

(2) if o and B are tuple variables with type @ and b,
respectively, then («a, f) is also a tuple variable
with type a X b.

Moreover variables that appear in a tuple variable must

be all distinct.

Informally speaking, a tuple variable is an extension
of a variable-list that occurs next to a LAMBDA
operator in LISP.

Definition. (Term of the A-calculus)

A term with type is inductively defined as follows:
(1) every variable with type a is a term with type a;
(2) every constant with type a is a term with type a;
(3) if Mand N are terms with type b° and a, respective-

ly, then (M “®-N) is a term with type b;

(4) if «is a tuple variable with type @ and M is a term
with type b, then (Aa.M) is a term with type b°.

When no confusion occurs, we write MN instead of
(M*¢-N).

Notations.

(i) The type of a term M is denoted by type (M).

(ii) An equation is M=N, where M and N are terms
with the same type.

(iii) The set of all variables that occur in a tuple

variable « is denoted by var(c).

(iv) A free variable in a term M is defined in the usual

way, and the set of all free variables in M is
denoted by FV(M).

(v) In general, «, B, », . . . are tuple variables, M,

M,M, ... ,NNN,N,, ...,L,...areterms,
and x, X1, X2, . .., YV, Yi, Y2y o+ ., Z, .. are
variables.

(vi) ¥and N are abbreviations of x,, . . . , x, and N,,

..., N, respectively.

(vii) M[f\"/?\"] is the term obtained from a term M by
substituting each x; for N, simultaneously, where
type (N)=type (x;) (1 <i<n). When a conflict of
variables occurs (e.g. (Ay.M)[Ny/x]), we replace

HIROFUMI YOKOUCH!

the bound variables by other variables.
Definitions. (Axiom system of the A-calculus)
We define the axiom system of the A-calculus.
1) M=M,
Q) M=N=N=M,
(3) L=M, M=N=L=N,
(4) M\=M>, Ny=N,= (M, N\)={(M>, N2),
(5) M|:M2, N|:N2=>M1N1:M2N2,
(6) M| :M2= Aa.MI:Aa.Mz
N Aa.M=la' M[F/F],
where o' is «[J/X] and {F} NFV(Aa.M)=¢,
®) (a.M)(@[N/Z))=MIN/3],
(99 M=Nif M and N are terms with type 1,
(10) Aa.Ma=M,
where var(e) NFV(M)=¢.
In the above equations, types of the terms are as-
sumed to be consistently defined.
When an equation M=N is deduced from the axiom
system of the A-calculus, we say that M= N is provable
in the A-calculus and write - M=N.

3. The typed composition calculus

We now define the typed composition calculus (sim-
ply called the composition calculus). The composition
calculus has no variables. In the A-calculus defined in
Section 2, each constant has a single type. On the other
hand, in the composition calculus each constant has an
ordered pair of types. The ordered pair of types @ and b
is written as a— b. When a constant f has a— b, we write
Sf:a—b. Intuitively fia—b means that f is a function
from a to b.

The composition calculus always has the following
constants called the special constants: id,:a—a, ,.a—1,
p*Paxb—a, ¢*:axb —b and er”’:b° X a—b for each
type a and b. Here p*? and ¢** intuitively mean projec-
tions from aXb, and ev*? corresponds to ‘apply’ in
LISP or FFP. We intend ev*® to have the meaning:
er"*((f, x))=f(x).

Definition. (Term of the composition calculus)

A term with an ordered pair of types is inductively
defined as follows:

(1) every constant f:a—b is a term with the same
ordered pair of types;

(2) if fia—b and g:b—c are terms, then g ° fia—cis a
term;

(3) if fic»aand g:c—b are terms, then (f, g):c—~>aXb
is a term;

(4) if h:cXa—bis a term, then A (h):c—bis a term.

Whenever no conflict occurs, we omit the subscripts ¢
and a of A.,. In the above, {f, g) is the same as in FP,
and A(h) corresponds to the curried function of A, that
is, AMX)()=h(x, y)). In FP(FFP), ‘apply’ cor-
responding to ev™’ appears, but the operation A(—) is
not included in the system.

Definition. (Axiom system of the composition
calculus)

We define the axiom system of the composition

Application and Composition in Functional Programming

calculus.
I. (1) s=s,
(2) s=t=t=s,
3) s=t, t=u=s=u,
@) si=s, h=h=h°si1=h°s,
(B) si1=82, h=6=4s, H)={(5, t2),
(6) si=s:=2A(s))=A(s2),
II. (7) (secd)ou=seo(tou),
(8) scoid,=s, id, o s=s (where s:a—b),
9) !;°s=1!, (where s:b—a),

(10) p*to (s, ty=s, g (s, t)=t,

(11) (s, t)yocu={(s°u,tou)y,

(12) (p*, @¢**) =idaxs,

(13) ev*? o (A) s, ty=uvo{s,t),

(14) A() o t=A(s° (t o p™, ¢**))

(where s:cXa—b and t:d—c),

(15) A(ev*’)=idp..

Here a pair of terms in each equation has the same
type. In the above equations, ordered pairs of types are
assumed to be consistently defined. When an equation
s=t can be deduced from the above axiom system, we
say that s=¢is provable in the composition calculus and
write F— s=¢t.

In the above axiom system, axioms (13) and (14) are
rather complicated. The other axioms are simple and in-
tuitive. We can check axiom (13), by applying a variable
x to both terms of the axiom. We can informally
calculate the following.

(ev"” o {Au) 5,))x)
=ev" ({ Au)(s(x)), 1(x)))
= A(u)(s(x))(#(x))
=u({s(x), 1(x)))
=(u° (s, 1))
On the other hand, if we apply z and x to both terms of
axiom (14), then
A(s e (t e p™, g INZ)(X)
=(s° Kt p™, ¢*))z, X))
=5({#(z), x))
=A(s)((2))(x)
=(A(s) ° NER)X)

4. Equivalence Theorem

We show that the A-calculus and the composition
calculus are essentially the same. First we define the
translation rule [—] that interprets a term of the A-
calculus into a term of the composition calculus. Next,
conversely, we define the rule (—)* that translates a
term of the composition calculus into a term of the A-
calculus. Finally we prove that both [—] and (—)*
preserve meanings of terms.

Definition.

Let L be a language of the A-calculus. We define the
language C(L) of the composition calculus as follows:
(1) the types of C(L) are just the same as of L, and
(2) ks a constant with type a of L iff fi:1—a of C(L).

For each pair of a tuple variable y and a term M,
when FV(M)Cvar(y), we inductively define the term

219

[Ay.M]:type (y)—type (M) of C(L) as follows.
1) [Ay-k1=fi° Liypeoms

where k is a constant of L,
(2) [Axx]=idiype s
3) [Aa, B).x]=[Aa.x] o p** if xevar(a), and

[A<a, BY.y1=[A8-y] ° g** if yevar(B),

where a=type () and b=type (),
@) [AyAM\, My)]=([Ay.M\],[Ay.M2]),
S) [Ay-MMy)=er™® o ([Ay.M\], [Ay.M)]),

where b?=type (M,) and a=type (M,),
6) [Ay.(Aa.M)]=A([A<y, «').M1)),

where c=type () and a=type (a).
Here o' is the tuple variable obtained from « by replac-
ing all the variables contained in var(y) by new variables
with the same types, and M| is also the term obtained
from M, by replacing the variables contained in var(y)
by the corresponding variables in var(a’).

Whenever we mention [Ay.M], we assume that
FV(M)Cvar(y).

Definition.

Let L be a language of the composition calcuius. We
define the language A(L) of the A-calculus as follows:
(1) the types of A(L) are the same as those of L, and
(2) k:a—bis anon-special constant of L iff ¢, is a con-

stant with type b° of A(L).

For each term t:a— b of L, we define a closed term ¢*
with type b of L.

(1) k*=Ax.cux if k is a non-special constant of L,

Q) (id)*=Ax.x,

) ()*=Ax.(),
where {) is the constant with type 1 defined in Sec-
tion 2,

@ (P =A(x, yy.x,

5) (@D)*=Mx, p>.y,

6) (ev"?)*=A(w, x).vx,
where type (v)=5° and type (x)=a,

7 (s° D)*=Ax.s*(t*x),

®) (s,)*=1z.(5%z, '),

9) (AcdN*=Az.(Ax.s%(z, x)),
where type (2)=c and type (x)=a.

Equivalence Theorem.

@) H-M=Ne = [Ay.M]=[1y.N].

(i) t=s=te b s*=r*.

(i) F- [Ay.M1*=1y.M,
if all ¢y, ¢ Y=k are added to the axiom system,
where k is a constant of the A-calculus.

(iv) = [*=1,
if all fi,=A(k > g"") are added to the axiom
system, where k:a—b is a non-special constant of
the composition calculus.

Proof. See Appendix.

Note that b~ [k*]=k under the assumption: f,

=A(k ° g"°). Indeed we can calculate as follows:
[k*]=[Az.cx2)
=ev™? o ([Az.ci], [A2.2])
=ev™ o (A(k ° g") !, id,)
=kog" o (!, id)
=k.

220

The Equivalence Theorem shows that [—] and (—)*
preserve meanings of terms. The A-calculus and the com-
position calculus are essentially the same.

5. Concluding Remarks

We have discussed functional programming
languages of two types: applicative languages and com-
positional languages. To formalize them, we have de-
fined the typed A-calculus with product and the typed
composition calculus. We have formally shown that
both formal systems are essentially the same.

As mentioned in Section 1, the compositional
languages are defined without variables. This means
that the compositional languages are naturally formal-
ized as algebras. Indeed the composition calculus dis-
cussed in this paper can be regarded as an algebra.
Backus introduced the FP algebra, which is used for ex-
amining properties of programs. It is known that the A-
calculus can also be defined without variables by use of
the combinators K and S.. This mechanism is used
effectively in applicative programming languages. The
composition calculus is another method of deleting
variables.

The arguments we have discussed are based on results
found in working with the A-calcalculus theory. Recent-
ly models of the A-calculus have been examined in the
light of category theory. It is known that models of the
A-calculus are closely related to cartesian closed
categories. The composition calculus is coincident with
cartesian closed categories. See [6], [7] and [4]. In par-
ticular, we refer the reader to [6].

In this paper we have dealt with typed languages. But
all arguments can be immediately translated to type-
free languages. If we regard all types besides 1 as being
identical, then the entire discussion including the
Equivalence Theorem still holds without any modifica-
tions.

References

1. Backus, J. Can Programming Be Liberated from the von
Neuman Style? A Functional Style and Its Algebra of Programs,
CACM 21, 8, (1978), 613-614.

2. Backus, J. The Algebra of Functional Programs: Function Level
Reasoning, Linear Equations, and Extended Definitions, Proc. Inter-
national Colloquium on the Formalization of Programming Con-
cepts, Lecture Notes in Computer Science, 107, Springer-Verlag,
(1981).

3. BAckus, J. Functional Level Programs as Mathematical Objects,
Proc. Functional Programming languages and Computer Architec-
ture, (1980), 1-10.

4. BARENDREGT, H. The Lambda Calculus—Its Syntax and Seman-
tics, Studies in Logic 103, Second Edition, North-Holland (1984).
5. GorDON, M. J., A. J. MILNER and C. P, WORDSWORTH Edin-
burgh LCF, Lecture Notes in Computer Science, 78, Springer-Verlag,
(1979).

6. KovMaNs, C. P. J. Models of the Lambda Calculus, Information
and Control, 52, (1982), 306-332.

7. Kovmans, C. P. J. Models of the Lambda Calculus, Ph. D
Thesis, University of Utrecht, (1984).

8. TurNeEr, D. A. The Semantic Elegance of Applicative
Languages, Proc. Functional Programming Languages and Com-
Dputer Architecture, (1980), 85-93.

9. Turner, D. A. Recursive Equations as a Programming

HIROFUMI YOKOUCHI

Language, in Functional Programming and its Applications, Ed. J.
Darington et al., Cambridge University Press, (1979).

Appendix. Proof of Equivalence Theorem

Lemma.

(i) [48-71 ° [Ac.Bl=[Acry].

(i) [Ada, B).Y]=[Aa.y] o p*® if var (y)Cvar (a),
and
(Aa, BY.Y1=[AB.y] ° ¢*" if var (y)Cvar (),
where a=type (o) and b=type (/).

Gii) [Aa.M]=[Aa' .M[P/X],
where o’ =a[J/X].

(iv) [Aa.M]o [AB.a]=[A8.M]. -

V) [Aa.M] o [AB.a[N/F]]=[AB.M[N/Z]].

Proof. (i)-(iii). Easy.

(iv) We use induction on the structure of M. Con-
sider the case that M is Ay.M'. By (iii) we can assume
that var (a)Nvar (y)=¢ and var (S)Nvar (y)=¢.
[Aa.(Ay.M')] ° [AB.a]

=A([Ae, y).M']) o [AB.0]

=A([ACa, Y.M'] o ([AB.a) o p*<, ¢**))

=A([Aa, y).M'] ° [Ila, y) La, ¥)]

° ([AB.a] ° p**, g*))
(by the induction hypothesis)
=A([A{a, y).M'] o ([La.a] ° [A8.a]
o p*, [Ay.y) ° ¢"))
(by (ii)) .
=A([A<a, ¥).M'] o ([AB.a] ° p*<, [Ay.¥] ° ¢*°))
(by (1))
=AM, y).M'] 2 [A{B, ¥).{a, M)])
(by (ii))
=A(A(B, y)-M'])
(by the induction hypothesis)

=[A8.(Ay.M")]

Here b=type (8) and c=type (y). The rest is clear.
(v) We use induction on the structure of M. When M is
Ay.M',

[Aa.(Ay.M")] » [A8.a[N/X1] -

= A4, ¥).M"]) > [AB.a[N/T]]

=A([ACa, y>.M'] o ({AB.a[N/F]] © p*<, ¢*°))

=A([Ae, y).M'] -

° [Aa, p).Ca.pd] o ([AB.a[N/F]] ° [18.8]

opb,t, qb,c>)

(by (v) _
=A([Ala, y).M'] ° {[Aa.a] ° [AB.¢[N/X]]

o [AB.8] ° p**, [Ay.¥] ° ¢"))

(by (ii)) -
=A([Aa, y).M'] ° {([Aa.a] ° [AB.a[N/F]]

o [ACB, v>.B, [ACB, »).7]))

(by (ii)) -
=A([Aa, y>.M'] ° {[Aa.a] ° [A{ B, ¥).alN/F]],

[Ap.y] o [ACB, v).91))

(by (iv) and (i))
=A(Ma, y).M'] ° [Ma, y)La, P)]

° [A(B, p)a[N/Z], »)])

(by (i) -
=A([A e, y).M'] ° [A{ B, > .CalN/Z], p)])

(by (iv)) -
=A([ALB, y).M'[N/3])

Application and Composition in Functional Programming

(by the induction hypothesis)
=[AB.(Ay.M")[N/3]]
Here b=type () and c=type (y). The rest is clear.
Proof of Equivalence Theorem
The essential point of the proof is the only-if part of
(i). The other parts are easily proved. To show the only-
if part of (i), we use induction on the length of the
proof of M=N. We only treat the essential axioms (8)
and (10) of the A-calculus. The other cases are clear.
Axiom (8) (Aoe.M)([N/3]) = M[N/Z].
[Ay.(Aoe. M) ([N/3))] -
=ev™ o (A([{y, o) .M]), [Ay_:a[N/SE]])
=[Aly, a).M] - (id., [Ay.a[N/F]])
=y, a) M] o [Ay, a) (y, a)]
° (id, [Ay.alN/X])
(by Lemma (iv))
=[A(y,). M] °[A<p, @) (y,)]
° ([Ay.y] e P, @) ° (ide, [Ay.«IN/X]])
(using Lemma (i) and (ii))
=y,). M] o ([Ay.y) ° p*°, ¢
° (id, [Ay.aN/XD
(by Lemma (iv))
=y, @).M] e [Ay.Cy, «[N/F]]
=[4y.MIN/3]]
(by Lemma (v))
Here a=type (), b=type (M) and c=type ().
Axiom (10) Aa.Ma=M.
[Ay.(Aa.Ma)}
=AMy, o). Ma])
=A(er™’ © {[Aly, a).M], [A(p, a).a])
=A(er™® o ([Ay.M] ° [A{y, a).}],
A<y, a).al))
(by Lemma (iv))
(Note that var (&)NFV(M)=¢.)
=A(ev™® o ([Ay.M] ° [Ay.y] o p*,
[Aa.a] o g°))
=A(er™” © ([Ap.M] ° p*, [Aa.a] © g°°Y)
(by Lemma (iv))
=A(er"? ° {[Ay.M] ° p, ¢°))
(by Axiom (12) of the composition calculus)
=A(ev*’) ° [Ay.M]
=[iy.M]
(by Axiom (15) of the composition calculus)
Here a=type («), b=type (M) and c=type (y).

(Received June 10, 1985; revised November 12, 1985)

221

