An Algorithm for Division of Large Integers

ICHIRO SEMBA*

We consider a division of large integers. The ordinary pencil-and-paper method with divide-and-correct technique is well known.

This paper proposes a division algorithm determining a quotient exactly without any correction technique.

1. Introduction

We consider a division of large integers. We assume that all numbers we deal with are nonnegative. A division algorithm based on the ordinary pencil-and-paper method is discussed in Knuth[1]. The divide-and-correct technique is used in the ordinary process of long division.

When a n+1 digit integer y is divided by a n digit integer x, where n>1, $0 \le y/x < b$ and b is the radix of ordinary positional notation, the divide-and-correct technique makes a guess about a quotient by using the leading digit(s) of y and the leading digit of x. A good approximation to the desired answer is obtained, but is not always exact. Therefore, if necessary, the approximation has to be corrected. Let p be an approximation to a quotient $\lfloor y/x \rfloor$. If $y-px<0(\ge x)$, then p has to be decreased(increased).

This paper proposes an algorithm determining a quotient exactly, based on the i+1 leading digits of y and the i leading digits of x, where $1 \le i \le n$. Computer experiments indicate that a value of 2 for i is sufficient in almost all cases, when b is large.

2. Algorithm

In this section we shall discuss an algorithm for division of a (m+n)-place integer by a n-place integer, giving a (m+1)-place quotient and a n-place remainder. The term 'n-place integer' means any integer less than b^n , where b is the radix of ordinary positional notation in which the numbers are expressed.

Example. The number 123456789 is considered to be a 9-place integer to the base 10 and also considered to be 3-place integer to the base 10⁴.

We are given the following primitive operations.

- (a) addition or subtraction of two-place integers, giving a two-place answer.
- (b) multiplication of a two-place integer by a oneplace integer, giving a two-place answer.
- (c) division of a two-place integer by a two-place integer, giving a two-place quotient and a two-place re-

mainder.

If a two-place integer is represented by a word in a computer, nearly all computers will have these three operations available. So we will construct a long-division algorithm with these primitive operations (a), (b) and (c).

We note that the answer obtained by the operation (a) or (b) is less than b^2 in our algorithm. Therefore an overflow does not result from operation (a) or (b).

First we consider the following problem.

Let $x = (x_1x_2 ... x_n)_b$ and $y = (y_0y_1y_2 ... y_n)_b$ be nonnegative integers in radix b notation, such that $n > 1, x_1 > 0$ and y/x < b. Find an algorithm to determine a quotient q = |y/x|.

Our approach is to determine a quotient q, based on the i leading digits of x and the i+1 leading digits of y.

Let
$$u_i = \lfloor (y_0 y_1 y_2 \dots y_i)_b / (x_1 x_2 \dots x_i)_b \rfloor$$
 $(1 \le i \le n)$.

It is easily seen that this value u_i is a very good approximation to a quotient q, so long as i is reasonably large. We note that $u_n = q$.

We can compute the value u_1 by primitive operations. However it is not obvious that the values $u_i (i \ge 2)$ can be computed by primitive operations. In the following, we show that a quotient $\lfloor y/x \rfloor$ can be computed by primitive operations.

Let
$$v_i = (y_0 y_1 y_2 \dots y_i)_b \mod (x_1 x_2 \dots x_i)_b (1 \le i \le n)$$
.

The values u_1 and v_1 are computed by primitive operations. The following property shows that the values u_2 and v_2 are computed by primitive operations.

Property 2.1 Let
$$A = \lfloor |bv_1 + y_2 - u_1x_2|/(x_1x_2)_b \rfloor$$
 and $B = |bv_1 + y_2 - u_1x_2| \mod (x_1x_2)_b$.

- (1) If $bv_1 + y_2 u_1x_2 \ge 0$, then we have $u_2 = u_1 + A$ and $v_2 = B$.
- (2) If $bv_1 + y_2 u_1x_2 < 0$, then we have $u_2 = u_1 A 1$ and $v_2 = (x_1x_2)_b B$.

Proof. Since $(y_0y_1y_2)_b = u_2(x_1x_2)_b + v_2$ and $(y_0y_1)_b = u_1(x_1)_b + v_1$, it follows that

^{*}College of General Education, Ibaraki University, 2-1-1, Bunkyo, Mito, 310 Japan.

 $(y_0y_1y_2)_b = u_1(x_1x_2)_b + bv_1 + y_2 - u_1x_2.$

If $bv_1+y_2-u_1x_2 \ge 0$, then we have $bv_1+y_2-u_1x_2 = A(x_1x_2)_b + B$.

Therefore we obtain $(y_0y_1y_2)_b = (u_1 + A)(x_1x_2)_b + B$. This means that $u_2 = u_1 + A$ and $v_2 = B$.

If $bv_1+y_2-u_1x_2<0$, then we have $-(bv_1+y_2-u_1x_2)$ = $A(x_1x_2)_h+B$.

Therefore we obtain $(y_0y_1y_2)_b = u_1(x_1x_2)_b - A(x_1x_2)_b - B = (u_1 - A - 1)(x_1x_2)_b + (x_1x_2)_b - B$.

This means that $u_2=u_1-A-1$ and $v_2=(x_1x_2)_b-B$. This completes the proof.

The following property shows the relation u_{i-1} , v_{i-1} and u_i , $v_i(3 \le i \le n)$.

Property 2.2 Let $3 \le i \le n$.

- (1) If $v_{i-1} < b$ and $bv_{i-1} + y_i u_{i-1}x_i \ge 0$, then we have $u_i = u_{i-1}$ and $v_i = bv_{i-1} + y_i u_{i-1}x_i$ $(0 \le v_i < b^2)$.
- (2) If $v_{i-1} < b$ and $bv_{i-1} + y_i u_{i-1}x_i < 0$, then we have $u_i = u_{i-1} 1$ and $v_i = (bv_{i-1} + y_i u_{i-1}x_i) + (x_1x_2 \dots x_i)_b$ $(b \le v_i)$.
- (3) If $v_{i-1} \ge b$, then we have $u_i = u_{i-1}$ and $v_i = bv_{i-1} + y_i u_{i-1}x_i$ $(b \le v_i)$.

Proof. By the fact that

$$(y_0y_1y_2 \dots y_i)_b = u_i(x_1x_2 \dots x_i)_b + v_i(y_0y_1y_2 \dots y_{i-1})_b = u_{i-1}(x_1x_2 \dots x_{i-1})_b + v_{i-1},$$

it follows that

$$(y_0y_1y_2 \dots y_i)_b = u_{i-1}(x_1x_2 \dots x_i)_b + bv_{i-1} + y_i - u_{i-1}x_i.$$

The relation $0 \le v_{i-1} < b$ implies that

$$-(x_1x_2...x_i)_b < bv_{i-1}+y_i-u_{i-1}x_i < (x_1x_2...x_i)_b.$$

Therefore, if $bv_{i-1}+y_i-u_{i-1}x_i\geq 0$, then we have

$$u_i = u_{i-1}$$
 and $v_i = bv_{i-1} + y_i - u_{i-1}x_i$ $(0 \le v_i < b^2)$

If $bv_{i-1}+y_i-u_{i-1}x_i<0$, then we have

$$u_i = u_{i-1} - 1$$
 and $v_i = (bv_{i-1} + y_i - u_{i-1}x_i) + (x_1x_2 \dots x_i)_b \ (b \le v_i).$

The relation $v_{i-1} \ge b$ implies that

$$0 \leq bv_{i-1} + y_i - u_{i-1}x_i < (x_1x_2 \ldots x_i)b.$$

Therefore we have $u_i=u_{i-1}$ and $v_i=bv_{i-1}y_i-u_{i-1}x_i$ $(b \le v_i)$.

The completes the proof.

We can derive the following conclusion from Property 2.2 and the fact that $u_n = q$.

Property 2.3 Let $2 \le i \le n$.

If
$$v_2 < b$$
, ..., $v_{i-1} < b$, $v_i \ge b$, then we have $u_i = u_{i+1} = \ldots = u_n = q$.

Proof. Obvious.

Thus the exact quotient is obtained by primitive operations.

From Properties 2.1, 2.2 and 2.3, we can construct the following algorithm determining the quotient q = |y/x|.

Algorithm A. Given nonnegative integers, $x=(x_1 \ x_2 \dots x_n)_b$ and $y=(y_0y_1y_2 \dots y_n)_b$, where n>1, $x_1>0$ and $\lfloor y/x \rfloor < b$, this algorithm computes the quotient $q=\lfloor y/x \rfloor$.

The algorithm A is written in Pascal-like notation.

begin

```
{compute u_1 and v_1}
  u_1 := (y_0 y_1)_b \operatorname{div} x_1; v_1 := (y_0 y_1)_b \operatorname{mod} x_1;
   \{\text{compute } u_2 \text{ and } v_2\}
   w:=bv_1+y_2-u_1x_2;
  if w \ge 0 then begin
      u_2 := u_1 + w \operatorname{div}(x_1 x_2)_b; v_2 := w \operatorname{mod}(x_1 x_2)_b;
  end else begin
      u_2 := u_1 - 1 - (-w) \operatorname{div} (x_1 x_2)_b;
      v_2 := (x_1 x_2)_b - (-w) \mod (x_1 x_2)_b;
  end:
  i := 2;
  if u_2 = 0 then goto 1;
  while (v_i < b) and (i < n) do begin
      i := i + 1;
      w:=bv_{i-1}+y_i-u_{i-1}x_i;
      if w < 0 then begin
         u_i := u_{i-1} - 1; goto 1
         end else begin
         u_i := u_{i-1}; v_i := w
      end:
  end:
   \{q \text{ is determined}\}
1:
  q := u_i;
```

Now we can construct a long-division algorithm.

Algorithm B. Given nonnegative integers, $s = (s_0 s_1 \dots s_{m+n})_b$ and $t = (t_1 t_2 \dots t_n)_b$, where m > 0, n > 1, $s_0 = 0$ and $t_1 > 0$, this algorithm computes a quotient $\lfloor s/t \rfloor = (q_1 q_2 \dots q_{m+1})_b$ and a remainder $s \mod t = (r_1 r_2 \dots r_n)_b$. We note that $q_1 \ge b$ need not be considered because $s_0 = 0$ and $t_1 > 0$.

begin

```
k := 0;

for j := 0 to m do begin

determine q = \lfloor (s_j s_{j+1} \dots s_{j+n})_b / (t_1 t_2 \dots t_n)_b \rfloor

by using algorithm A.

k := k+1; \ q_k := q;

if q > 0 then (s_j \dots s_{j+n})_b := (s_j \dots s_{j+n})_b - q(t_1 \dots t_n)_b;

end;

(r_1 \dots r_n)_b := (s_{m+1} \dots s_{m+n})_b;

end.
```

Property 2.4

Algorithms A and B can be implemented by using primitive operations (a), (b) and (c). **Proof.** Obvious.

Example. Let $s = (0123456789)_{10}$ and $t = (1256)_{10}$. The algorithm B is executed as follows.

j	k	s_0	s_1	s_2	S ₃	S ₄	S 5	<i>S</i> ₆	S 7	<i>S</i> ₈	S9	q_1	q_2	q_3	q_4	q_{5}	q_6	u ₁	v_1	u ₂	v_2	u_3v_3
0	0	0	1	2	3	4	5	6	7	8	9											
																		1	0	1	0	0
	ı			_								0										
	_	0	1	2	3	4	5	6	7	8	9											
1	_																_					
													_	•				12	0	10	3	9
_	2											0	9									
		0	0	1	0	4	1	6	7	8	9											
2				-		-														•		
_																		10	0	8	8	8
	3											0	9	8								
		0	0	0	0	3	6	8	7	8	9											
3																						
																		3	0	3	0	2
-	4											0	9	8	2							
		0	0	0	0	1	1	7	5	8	9											
4																			_			
																		11	0	9	9	9
	5					_						0	9	8	2	9					-	
		0	0	0	0	0	0	4	5	4	9											
5						-	-					-										
																		4	0	3	9	3
	6											0	9	8	2	9	3					
		0	0	0	0	0	0	0	7	8	1											
6						_				_			_								_	

3. Computer Experiments

We have generated 10000 integer pairs of x and y, where $0 \le y/x < b$, at random and examined the required leading digits of x to determine a quotient $\lfloor y/x \rfloor$. Let i is the number of leading didits of x. The results are obtained as follows.

b	i	ı	2	3	4	5	6
10		0	8328	1494	160	17	1
100		0	9826	74	0	0	0
1000		0	9970	30	0	0	0
10000		0	9998	2	0	0	0

This means that a value of 2 for i is sufficient in almost all cases, when b is large.

Reference

1. Knuth. The Art of Computer Programming, seminumerical algorithms, 2nd, ed., (1981).

(Received December 25, 1985; revised September 8, 1986)