An Algorithm for Division of Large Integers

ICHIRO SEMBA*

We consider a division of large integers. The ordinary pencil-and-paper method with divide-and-correct

technique is well known.

This paper proposes a division algorithm determining a quotient exactly without any correction technique.

1. Introduction

We consider a division of large integers. We assume
that all numbers we deal with are nonnegative. A divi-
sion algorithm based on the ordinary pencil-and-paper
method is discussed in Knuth[1]. The divide-and-cor-
rect technique is used in the ordinary process of long
division.

When a n+1 digit integer y is divided by a n digit in-
teger x, where n>1, 0=y/x<b and b is the radix of or-
dinary positional notation, the divide-and-correct
technique makes a guess about a quotient by using the
leading digit(s) of y and the leading digit of x. A good
approximation to the desired answer is obtained, but is
not always exact. Therefore, if necessary, the approx-
imation has to be corrected. Let p be an approximation
to a quotient | y/x]| . If y—px<0(Zx), then p has to
be decreased(increased).

This paper proposes an algorithm determining a quo-
tient exactly, based on the i+1 leading digits of y and
the i leading digits of x, where 1 =i=n. Computer ex-
periments indicate that a value of 2 for / is sufficient in
almost all cases, when b is large.

2. Algorithm

In this section we shall discuss an algorithm for divi-
sion of a (m+ n)-place integer by a n-place integer, giv-
ing a (m+ 1)-place quotient and a n-place remainder.
The term ‘n-place integer’ means any integer less than
b, where b is the radix of ordinary positional notation
in which the numbers are expressed.

Example. The number 123456789 is considered to
be a 9-place integer to the base 10 and also con-
sidered to be 3-place integer to the base 10°

We are given the following primitive operations.

(a) addition or subtraction of two-place integers,
giving a two-place answer.

(b) multiplication of a two-place integer by a one-
place integer, giving a two-place answer.

(c) division of a two-place integer by a two-place in-
teger, giving a two-place quotient and a two-place re-
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mainder.

If a two-place integer is represented by a word in a
computer, nearly all computers will have these three
operations available. So we will construct a long-divi-
sion algorithm with these primitive operations (a), (b)
and (c).

We note that the answer obtained by the operation
(a) or (b) is less than b* in our algorithm. Therefore an

overflow does not result from operation (a) or (b).

First we consider the following problem.

Let x=(ax2. .. X)) and y=(Yoy1¥2 . . . Yn)» be
nonnegative integers in radix b notation, such that
n>1,x,>0and y/x<b. Find an algorithm to deter-
mine a quotient g= | y/x| .

Our approach is to determine a quotient g, based on
the i leading digits of x and the i+ 1 leading digits of y.

Let U= L(yoylyz . y,)b/(x|x2 e . x,),,J (lélérl)

It is easily seen that this value u; is a very good approx-
imation to a quotient g, so long as / is reasonably large.
We note that u,=gq.

We can compute the value u, by primitive operations.
However it is not obvious that the values u;(i=2) can be
computed by primitive operations. In the following, we
show that a quotient | y/x| can be computed by
primitive operations.

Let v,=(yoy1y2 . . . y)oymod (1 x2 . . . X)) (1=i=n).

The values u, and v, are computed by primitive opera-
tions. The following property shows that the values u,
and v, are computed by primitive operations.

Property 2.1 Let A= | [bvi+y:—uix2 |/ (xix2)s |
and
B=|bv,+y,—uix; | mod (x1x2)p.
(1) If bvy+y,—uix, 20, then we have u,=u,+ A4
and v,=B.
@ If bvy+y;—ux;<0, then we have
w,=u,—A—1 and v,=(x,x2),—B.

Proof. Since (yoyi1y2)s=u(x1x2)s+v; and (yoy1)o=
uy(x;)p+ v, it follows that
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(Yoyiy)s=u(x1x2)p+bvi+y2— 1 X2 Proof. Obvious.

Thus the exact quotient is obtained by primitive
operations.

From Properties 2.1, 2.2 and 2.3, we can construct
the following algorithm determining the quotient
q=Ly/x].

Algorithm A. Given nonnegative integers, x=(x;
X2 ...X)p and y=(Yoy1¥2 . - . Yu)», Where n>1,
xi>0and [ y/x| <b, this algorithm computes the
quotient g= | y/x| .

The algorithm A is written in Pascal-like notation.

If bvy+y;—uix:=0, then we have by, +y—ux,=
A(X[Xz)b“l" B.
Therefore we obtain (yoyiy2)s= (1 +A)(x1x2)s+ B.
This means that #,=u,+ A and v,=B.
If bv,+y,—u1x, <0, then we have —(bv,+y,—u;x2)
=A(X1X2)b+B.
Therefore we obtain (Voy1¥2)s= 1 (x1X2)p — A(X1X2)p —~
B=(u| —A- 1)(X|Xz)b + (x1X2)b —B.
This means that w,=u,—A—1 and v,=(xx2),— B.
This completes the proof.

The following property shows the relation u;-,, v;-; and

u;, vi(3=i=n). begin

{compute u, and v, }
U= (Yoy1)s 8iv xi; v1:=(yoy1 ) mod x;
{compute u, and v,}
wi=bv,+y:—u1x2;
if w=0 then begin
w:=u+wdiv (x1x2); v2:=w mod (X1X2)s;
end else begin
Wi == 1= (= w) div (x1x2),;
v2: = (X1x2)p = (— w) mod (x,x2);
end;
i:=2;
if u2=0 then goto 1;
while (v;<b) and (i<n) do begin

Property 2.2 Let3=i<n.

(1) If v,-4.<b and bv,--|+y;—u,-1x,§0, then we
have Ui=ui- and V= bv,»_l +y,-— Ui 1 Xi
O=v;<b).

@) If v, <b and by, +y,—u;i-1x:;<0, then we
have u,=u,--,—l and vi=(b0i_1+y;—u;_.x,)
+(X1X2 P x,-),, (bév,-).

(3) If v-,=b, then we have u;=u;-, and v;=
bvi—l +y.—ui_1x,- (b§l),)

Proof. By the fact that

Yony2 . o yp=uilxixa . . . Xdo ii=i+1;
+vi(Yoy i y2 ... Yi-ih we=bvi_ | +Yi— Ui- 1 Xi;
=u(0%s -+ Xie)sF i, if w<O then begin

ui:=u;-;—1; goto 1
it follows that end else begin

Yoyiyz .« Yie=ui- (X2 . . . Xi)p Up=Ui-i; Ui =W

end;
+bvi— Fyi—ui-1xi. end;
The relation 0=y;—, <b implies that {g is determined)
1:
—(axz . . X <bviFyi—uiaxi<(axz ... Xibe g:=u;
Therefore, if bvi—,+yi—u;-1x;=0, then we have end.

= = bu; —uax (0=, < B? P .
ui=u;-y and v;=bv;—1+y,—ui-1 % 0=0,<b%) Now we can construct a long-division algorithm.

If bvi—1 +y;—u;-1x;<0, then we have Algorithm B. Given nonnegative integers, s=(Sos; . . -
Sm+n)s and t=(t, . .. ty)p, where m>0, n>1,

ui=u;-1—1 and ;= (bv;-1+yi— i1 %) so=0and ¢, >0, this algorithm computes a quotient

+xxz. .. X (DS0). |s/t] =(q:1qz . - . gm+1)» and a remainder s mod
\ . . t=(rir; ... r.)s We note that q,=b need not be
>
The relation vi- 2 b implies that considered because s,=0 and #,>0.
0=<bv_,+yi—ui-xi<(1x2 . . . X)b. begin
k:=0;

Therefore we have w;=u;—, and v;}=bv;—\y;— Ui-1X;

(b§11i).

The completes the proof.

We can derive the following conclusion from Proper-
ty 2.2 and the fact that u,=gq.

for j:=0 to m do begin
determine q= I_(S,‘S_,'+1. .. Sj+,,)b/(t|tz . tn)b_l
by using algorithm 4.
ki=k+1; qi:=q;
if g>0then (s; ... Sj+n)o:=(Sj. .. Si+n)s

Property 2.3 Let 2<i=n. —q . - )

end;
i = ’
If 1,<b, ..., v,-,<b, v;=b, then we have Cr e F = (mst o - Swendes

U=Uir 11— ... —Us=(q. end.
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Property 2.4 3. Computer Experiments
Algorithms A and B can be implemented by using . .
primitive operations (), () and (c). We have generated 10000 integer pairs of x and y,
Proof. Obvious. where 0=<y/x<b, at random and examined the re-
quired leading digits of x to determine a quotient | y/
Example. Let s=(0123456789),p and 1=(1256),. x] . Let i is the number of leading didits of x. The
The algorithm B is executed as follows. results are obtained as follows.
ﬁjfkisl Sy S3 S4 S5 S¢ S7 53 S Qﬁzgij114 Qs ge Uy V) Uy Uy Usls b i | 5 3 4 5 6
0001234567859 10 0 8328 1494 160 17 1
10 10 0 100 0 9826 74 0 0 0
1000 0 9970 30 0 0 0
! 0 10000 0 0 0 0

9998 2

0123456789

120103 9
R o5 This means that a value of 2 for / is sufficient in
T almost all cases, when b is large.
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