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We consider some superconvergence phenomena followed by the averaging gradients in a Galerkin method
for two point boundary value problems using continuous piecewise polynomials. It is shown that several a
posteriori methods based on the averaging procedures yield superconvergent approximations to the exact solu-
tion and its derivative with one order better rates of convergence than the optimal rates. The special emphasis of
the paper is the fact that the superconvergence phenomena only occur in cases using odd degree polynomials.
We illustrate some numerical examples which confirm the theoretical results. Furthermore, we also describe the
extension of the results to the parabolic problems in a single space variable.

1. Introduction

The averaging gradient was an old practice in finite
element methods to improve the accuracy of approxima-
tion of derivatives. Krizek & Neittaanmaki [4] first
presented a theoretical basis for the technique in case of
linear finite element method in R%. They proved that the
averaged gradient is a superconvergent approximation
to the exact gradient in L2-norm sense.

In this paper, we study the various superconvergence
phenomena following from the averaging gradient in a
Galerkin method for two point boundary value prob-
lems using continuous piecewise polynomials of ar-
bitrary degree. Further, we consider the extension of
these results to one space dimensional parabolic prob-
lems. It is shown that several a posteriori methods
based on averaging gradient lead to the approximations
which have one order better rates of convergence in L*-
norm sense than the optimal rates. The special emphasis
of the paper is the fact that the superconvergence
phenomena by the averaging technique occur only in
cases using odd degree polynomials. That is, beyond
our expectation, in case of even degree polynomials
those phenomena are not observed as clarified later. We
also note that each proposition throughout the paper is
established without quasi-uniformity condition for the
partition of the interval. Moreover, the results obtained
here will be extended to the two dimensional elliptic
boundary value problems in {9].

In the following section, we describe the two point
boundary value problem under consideration and in-
troduce some notations for later use. Then we define the
Galerkin approximation for the problem. In 3, it is prov-
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ed in case of using odd degree polynomials that, by vir-
tue of the property of the Jacobi points, the averaged
values of left and right limits of the approximate
derivatives at the internal knots converge to exact
derivatives with one order higher than the optimal rate.
Further, combining the result with the super-
convergence of the derivatives at the Gauss points, we
consider some simple procedures to provide the global-
ly superconvergent approximations for the exact
derivative and the solution itself. Finally, we present
some numerical examples which confirm the conclu-
sions obtained in the section. In 4, we extend the results
derived in 3 to the parabolic problems in one space
dimension.

2. Problem, notations and the Galerkin method

Consider the following two point boundary value
problem

@ {LyE —(ax)y") +bx)y’ +c(x)y=f(x), xel,
»(0)=y(1)=0,
where I=(0, 1). Assume that a, b, ceC'(I) and there ex-
ist constants ag, «; such that
0<ap=a(x)=ai, xel.

Further assume that (2.1) has a unique solution for each
SfeCd). Let A:0=x,<x,<---<xy=1 be a partition of
I and set Ii=(xi-, x;), hi=x;—x;-, and h=max,<i=n h.
For a positive integer & and EC/, let P,(E) denote the
set of polynomials on E of degree at most k. Also we
define

PRI)= {vePe(l): v(xi-1)=0(x;)=0},
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M (A)= {v: vl,,EPk(I;), 1<isSN},

IY(A)= {veC): vePe(l}), 1=iSN, v(0)=0v(1)=0}.
Here the symbol A will be usually omitted. For an in-
teger m=0 and 1Sp=oo, let

d'¢
WNE)= {¢: vl LP(E), 0§1gm}
and

m

lel W;,"(E>=IZ

=0

d's
ax’
where L?(E) denotes usual L”-space on E. Especially,
we denote W4(E) by H"(E). When E=1, the dependen-
cy on th interval will be suppressed (e.g. |¢|/w, means
lollwy(I)). Also, we use the symbol C to denote a
generic positive constant independent of 2 and not
necessarily the same in any two places.

From now on, we fix an integer r (1) and simply
denote MG by M. We define the Galerkin approxima-
tion YeIN to (2.1) by

2.2) B(Y, v)=(f,v), vedl,

where

>
LA(E)

B(Y,v)=(@@Y’,v)+(bY +cY,v),

and (-, -) implies 22 inner product on /. The existence
and uniqueness of the solution to (2.2) and the error esti-
mates are well known for sufficiently small & (e.g. [2],
[10] etc.).

We now state some additional definitions used later.
The Jacobi polynomial of degree & is defined as

L a
gw(x) dx*

2.3) Je(x)= w1 — X)),

where w(x)=x*(1—x), o, > —1 and ¢ is a constant
chosen such that the coefficient of x* in (2.3) is 1. The
Jacobi points gj, 1 =j=<r—1, on I are determined by the
r—1 roots of J.—;(x)=0 with w(x)=x(1—x). And the
Gauss points 7, | Sk =r, are the roots of J.(x)=0 with
w(x)=1. Next, the Jacobi and the Gauss points on /; are
defined as the following affine transformations:

1sjsr-1,

1=k=r.

(2.4) Jacobipoints: g;=xi-+higj,

(2.5) Gauss points: Tk =x;-1+ i1,

3. Superconvergent approximations by averaging
gradients

In this section we consider some a posteriori pro-
cedures which can be made to provide superconvergent
approximations to y and y' at any points on I
Let Hi(I)=H'(I)N {¢: $(0)=¢(/)=0} . Then for each
geH §(I), let PgeIN be a projection defined by

3.1 (¢'—(Pg),v)=0, vedl.

We now set I =(xi—1, Xi+1), | =i=<N—1, and for a func-

tion y which is differentiable on I} except for x;, define
the averaged gradients by

1
1+af

Diy= {v'(xi—)+afy' (xi+)},

where @;=h;/h;+1. The following result is essential for

our study, so we present a complete proof, though it

will be proved in [9] by a slightly different technique.
Lemma 1. If r is odd and ge W (I*)N H (1), then

|9’ (x;) — Di(Pg) | SCH;*||gllw s ATF),
where A;=max(h;, hi+1).
Proof. First, for any ¢eW7¥(I¥) define Q.¢eP.(I)
ﬂP,(I,-+.) by
32) {(¢'—(Qr¢)', v'),=0, vePXL), j=i, i+1,
' QX)) =0x), j=i—1,i,i+]1,

where (-, -);, implies L? inner product on ;. Next, we
define a linear functional L, on WF¥I¥) by

(3.3) Li($)=¢'(x;)—Di(Q: ).

It can be easily seen that P¢=Q,¢ on I* for each
oeH {(I) because of the following well known property

(e.g. [2]):
(3.4 (Po)(x)=0¢(x)), O0=i=N.
We now verify that L,(¢)=0 for any ¢€P,+,(I¥). Let

¢ be a fixed polynomial in P,.,(I¥). Then, taking into
account ¢=Q,. ¢, we have by the result in [6]

{(¢—Q,¢)(a,~,)=o, 1<Sj=r—1,
(¢— O d)(0i+1,,)=0, 1=j=r—1.

Hence, we have with constants o and §

3.5)

(3.6) Px)=alx—0ou) - (X 0ir-1)x—Xi— )(x—Xi)
+(Qr)(x), xel;
and
3.7 ¢(X)=B(x—0Gi+1,1) - - (X Cir 11 X —X)(X = Xi41)
+(Qré)x),
But we have a=p, for ¢(x) is a single polynomial global-
ly on I¥. Thus, differentiating (3.6), (3.7) and using
(2.4), (2.5) we obtain
(3.8) ¢'(xi—)=alxi—aun) - (xi—0ir-1)
X (6= xi-1) +(Qr9) (xi—)
=ahi(l1—0y) - -(1—0,-1)+(Q:¢) (xi—)

X€li+1.

and
(3.9 o'(xi+)=a(xi—0ir11) - (Xi—Cir1,-1)
X (= Xir 1) H(Qr9) (i t)
=(—1Yahi+101 - -0, +(Q,0) (xi+).

By virtue of the form of Jacobi polynomial, the follow-
ing relation holds:
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(1-a) - -(1—0g,-)=01"""0G,-.

Hence, for an odd integer r, (3.8) and (3.9) yield

¢'(Xi)=m_—la {his 1 (@) (xi—)+ H(Q8) (xi+)}

1

=3 (@9 (i) +ai(Q:6) (xi+))
«;

=DA(Q:9).

Thus, we have Li(¢)=0 for arbitrary ¢eP, . (I}¥).
Therefore, using the Peano Kernel theorem, we can con-
clude the proof.

We now obtain the following superconvergence esti-
mates at internal nodal points.

Theorem 1. Let r be an odd integer (=1). And let y
and Y be solutions to (2.1) and (2.2), respectively. If
yeWX(I), then for sufficiently small A,

maX_I ¥ x:)—DiY]| SCHY|y|

1SisSN

+2,
Witz

Proof. From the definition of D;, observe that
|y’ )= DiY| = |y (x)—Di(Py)| + | D(Py—Y)|
=Y’ 0)=DAPH + |(PY) = Y|
Here, by the proof of Theorem 2 in [7], we have
1®y) =Y |- =CH ™ yllwes .

Thus, combining this with Lemma 1 we obtain immedi-
ately the desired estimates.

Moreover, it is also known in [7], particularly
Theorem 2, that for each Gauss point tx€l;, 1=Sk=r,

(G101 =YY m) | SCR ™ (Wllwe s + | Yl wepay)-

Using this estimates and Theorem 1, we can provide
superconvergent approximations to y' and y on /. That
is, first choose DYeIN", satisfying on each I;,, 1<i<N,
DY(x))=D.Y,
3.11) ,
DY(tw)=Y (ta), 1=Zk=r.

When i=N replace the first equ_ation above by
DY (xy-1)=Dn-,Y. Next, we define YeIn™' by

(3.12) Y(x)=§ DY(E)dE+Y(xi.,)  for xel,.

Xi-

Then, DY and ¥ converge to ¥’ and y with one order bet-
ter than the optimal rate of convergence, respectively.
Theorem 2. As§ume the hypotheses of Theorem 1.
And let Dy and Y be functions defined by (3.11) and
(3.12), respectively. Then, for sufficiently small A.
(3.13) ||y —DY|.-=Ch"*!|y|lwy- for rz1,
G149 |y—¥|-=CH*|yllwy. for  rz3.
Proof. We define ZedN;*! by
'—=2Z,v)=0, vedly*.

Now observe that

M. T. NakaO

G.15) ' =DY|e-=|y' = Z'||e-+]|Z' ~ DYz

Since all norms in the finite dimensional space P,(I)) are
equivalent with each other, we have

Z' = DY rwq,

<c{IZ -DY)x) | +3] (Z DY)}
j=1

<Cll(y -DY)(x)| +z Iy’ =DY)o) 1}

+Cy = Z'|| 1~ay
SCH|yllwey=

where we have used (3.11), (3.10), Theorem 1 and the
well known estimates for y'—Z’. Combining this with
(3.15), we obtain the estimates (3.13).

Next, by (3.12) for arbitrary xel;, we have

X

(V' (€)= DY)+ y(xi-1)

(3.16)  y(x)—¥(x)= S
=Y(xi-1).
Note that, from the well known superconvergence pro-
perty at the mesh points (e.g. [2]),
|yCei-1)— Y(xi1) | =Ch” ||yl

Therefore, (3.14) follows immediately by (3.16) and
(3.13).
Now, we present some numerical examples to
demonstrate the results obtained in this section.
Problem:

3.17
G0 »O)=y(1)=0.

The exact solution to (3.17):

{ ~y"+3y' =2y=(—2x+3)e*, xel,

yx)=x(1—x)e*.

We solved (3.17) numerically using the approximation
scheme (2.2) with uniform partition and computed
various errors for several r and N. We illustrate these
values in Table 1~ 3. Meanings of the symbols in these
tables are as follows:

LEFT= max (I(y'=Y)x-)l},

RIGHT= max {|()'=Y)x+)},
— 4 ] !
MEAN= max {ly () , (Y (i—)
+Y'(x,-+))|},
OTHGRAD= I '—Y’( -2 '
IR Ty ’

) 2
NEWGRAD=max { ’(y DY)xi—3 h) l}

f
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OTHAPPR=112’%)[(V {'(y— Y) (xij-% h> !},

3

NEWAPPR = max { l(y— 7) (x,--z h)
1SisN 3

Table 1. Improvement of errors by averaging (for
r=3)
1 1
N LEFT | RIGHT JF MEAN
8 0.5204E-3 | 0.6509E-3 | 0.6520E-4
16 0.7591E-4 | 0.8483E-4 0.4461E-5
32 0.1024E-4 0.1083E-4 ‘ 0.2918E-6
64 0.1331E-5 0.1368E-5 | 0.1866E-7
Order= O(H) Oo(H) o(n*)
Table 2. Non-improvement of errors by averaging
(for r=2)
N | LEFT RIGHT | MEAN
8 0.2237E-1 0.2896E-1 0.2567E-1
16 0.6682E-2 0.7592E-2 ;| 0.7137E-2
32 0.1824E-2 0.1944E-2 l 0.1884E-2
64 0.4765E-3 0.4918E-3 1 0.4814E-3
Order= |  O®W) | OW) | O
Table 3. Improvements of errors by procedures (3.11)

and (3.12) (for r=3)

N |OTHGRAD NEWGRAD‘; 0THAPPR1NEWAPPR

|

0.1946E-4 1 0.1763E-5 !0.3620]3-6

8 [0.2191E-3
16 |0.3146E-4| 0.1286E-5 | 0.1231E-6|0.1248E-7
32 | 0.4210E-5| 0.8261E-7 | 0.8109E-8 | 0.4094E-9
64 | 0.5445E-6

0.5233E-8 | 0.5201E-9 1 0.1310E-10

Order = O(K*) — O(h*) O(h*) — O(K®)

Table 1 and 3 confirm the superconvergence estimates
asserted in Theorem 1 and 2, respectively. On the con-
trary, Table 2 shows that one cannot expect to improve
the accuracy by the averaging techniques in case we
adopt even degree polynomials.

4. Extension to the parabolic case

The results derived in previous section are naturally
extended to the diffusion problems in one space dimen-
sion. We now mention the outline for the parabolic
case. The main technique which plays an essential role
for the proof of the superconvergence estimates is the
quasi-projection method ([3]). The method can be ap-
plied to the present case in the similar manner to that of

7.

Now, consider parabolic problem

Bu_ o d (o du) o
p(x):a?—,cu:ax (a(x) 8x> + b(x) ax+c(x)u
“.n +é(x, 1), (x, nelxJ,
u(0, t)=u(l, t)=0, >0,

u(X, 0)=u0(x)y XEI,

where J=(0, T). We assume that there exist positive
constants po, p1, ap, o such that

0<po=p(x)=p,  xel,
0<a=a(x)=ay, xel,

and that p, a, b, ¢ and ¢ are sufficiently smooth.
The semidiscrete Galerkin approximation to (4.1) is
defined by a map U:J— I satisfying

(4.2-i) (p%], v) + B(U, v)=(¢, v) vedll, ted,
and

(4.2-ii) B(u,— U(0), v)=0, ved, t=0.
Here, the bilinear form B(-, -) is the same as in 2, that

1s,

B(¢, )= (adx, y:)+(bds+co, ).

The averaging procedure to obtain superconvergent
approximations for u, of O(h’*') at internal spatial
knots is also identically defined as before, i.e.

1 U aU
. U, )= —&i—, ) toi — (xi+, ,
4.3) D;U(-, 1) H_a;{(,’x(x H+ao 8x(x+ t)}
1SiSEN-1,
where C!i:hi/hi+|.
Now, before describing the superconvergence

theorem, we introduce some additional definitions.
When X is a normed space with norm || - || x, for a map
¢:J-X, we say oeWi(J:X) if |#(f)|x belongs to
Wk(J). Then the norm in W§(J:X) is defined by

d’p

K
&t W:(J:X)=j§ ”;17 L(J:X),
where
1/p
H ||'//(t)“5)rdt:] , 15p<oo,
" Wn LPUX)= !

ess.sup |w(®)||lx, p=oo.
e

We can now state the following superconvergence esti-
mates at the spatial nodal points.

Theorem 3. Let ¥ and U be solutions to (4.1) and
(4.2), respectively. If ris odd and ue W (J: W'?), then,
for sufficiently small A,
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a
3; O =D, D SCH ulwpowesy,  tel.

Proof. We define the so-called elliptic projection W:
J— 91, which allows us to obtain the desired estimates,

by
(4.9) Bu— W, v)=0, vedn, tel.

Next, we introduce a quasi-projection Z:J— 9 by
4.5 BZ,v= (p% u—w), v) s vedl, tel.

Further, we set
(4.6) E=W-U+Z.
Then, for 1=i<N—1 by Theorem 1

@7 <CHu(-, Dllwee, ted,

% o )=DWC, 1)
ax

On the other hand, by the estimates in [7] we have
4.8) IDiEC:, Olle==|E<(-, )] e-=CH*!

X ||uallwo (J:H™Y)
and

ou

(4.9) IDZC, l-sCh|=

Lo(J:H'Y)

Thus, the proof is now completed by (4.7)-(4.9) and the
triangle inequality.

Moreover, the global superconvergent approxima-
tions for u, and u are also constructed by the similar pro-
cedures to (3.11) and (3.12), respectively. That is, define
DU:J- 9", satisfy on each [, 1Si=N,

(4 10) DU(xi’ t)zDiU(‘9t)v tEJ,
' DU(tiu, )=U(ta, ),  1Sk=r, tel,

where 74 is defined by (2.5) and when i=N replaces /
by N—1 in the first equation. Further U:J— 9™} is de-
fined by

M. T. Nakao

x

.11 U, n= S DU, )dE+ U(xi-y, t),xel;, te.

By similar arguments to those used in the previous sec-
tion and the estimates obtained in [7] we get the follow-
ing results.

Theorem 4. Assume the hypotheses of Theorem 3
and let DU and U be maps defined by (4.10) and (4.11),
respectively. Then, for sufficiently small 4,

du
——=DU,| éch”“”ll”u/gnu;u/g!) for "gl,
ax Lo % J)
||u—(7||L,.(,x,,§Ch’+2||u|lWg_(,;w:z, for r=3.
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